Using virtual reality to share the ocean-April 18th

Erika Woolsey, Stanford/The Hydrous

Moss Landing Marine Labs Seminar Series - April 18th, 2019

Hosted by The Fisheries and Conservation Biology Lab

MLML Seminar Room, 4pm

Open to the public

Erika is a marine biologist, National Geographic Explorer, and Ocean Design Fellow at the Hasso Plattner Institute of Design at Stanford (the d.school) in partnership with the Stanford Center for Ocean Solutions. She studied biology and art history at Duke University and conducted her Masters and Ph.D. research on the Great Barrier Reef in Australia, where she lived and worked for seven years. Erika is CEO and co-founder of The Hydrous, a non-profit devoted to translating marine science into public understanding, and is Executive Producer of ‘Immerse,’ a virtual dive on the coral reefs of Palau.

Abstract:

How can we care about something we never see? Virtual reality (VR) can simulate places that are unreachable to most (like the ocean or outer space) and is a promising medium for science learning and generating empathy towards complex issues. In this seminar, Dr. Erika Woolsey will discuss the power of immersive experiences, especially related to threatened ocean environments, and share her VR/360 film ‘Immerse.'

 

Watch Erika’s MLML Seminar Presentation Below:

A World Upside Down: The Floating Seafloor of the Urania Basin-April 25th

Ivano Aiello, Moss Landing Marine Labs

Moss Landing Marine Labs Seminar Series - April 25th, 2019

Hosted by The Vertebrate Ecology Lab

MLML Seminar Room, 4pm

Open to the public

Bio: Ivano teaches several graduate courses on different topics and methodologies concerning Marine Geology and cross-disciplinary fields in marine sciences. Ivano's teaching phyilosophy and the research conducted in the Geology Lab are multidisciplinary is the sense that students combine to different degrees geology with a variety of other disciplines in marine sciences (e.g. marine ecology, biology). Ivano's research has also a general interdisciplinary approach: Sedimentology/paleoceanography of upwelling biogenic sediments in Europe and the Pacific Rim (e.g. Monterey Fmt.), eastern equatorial Pacific and Peru Margin (ODP Leg 201), the sub-Arctic (IODP Expedition 323 in the Bering Sea). Relationships between geology and microbial activity in deeply buried marine sediments and other extreme environments. Past evidence of microbial activity preserved by authigenic precipitates in sediments (cold seeps). Geologic/geomorphology of central California rapidly changing costal environments including Elkhorn Slough, beaches and sea cliffs of Monterey Bay. Use of terrestrial laser scanning and 3D data analysis to asses small-scale geomorphologic change.

Abstract:

The Urania Basin (Eastern Mediterranean) is a Deep Hypersaline Anoxic Basin (DHAB) characterized by extreme physical and chemical conditions including very high temperatures (>50ºC), very high salinities (more than 5X seawater) and some of the highest methane concentrations ever recorded in the water column (up to 3.8 mmol/L). Although the Urania Basin is a classic example of DHAB and has been investigated multiple times in the past 30 years, a recent deep-sea expedition made some groundbreaking discoveries both in terms of the physics/geology of the environment as well as concerning occurrence and distribution of microbial life in arguably one of earth's most extreme and inhospitable environments.We found that the lower half of the deep water brine is filled with a very fine (~6µm), high-density (>1.6g/cm3) fluid mud mainly composed of floating modern and fossil species of coccoliths. Because of thermal convection and the very fine size of the coccolith particles, we hypothesized that without accelerating mechanisms (e.g. fecal pellets) the mud could stay in suspension for times longer than the slowest normal pelagic settling creating what looks like an ‘expansion’ of the seafloor several tens of meters into the brine. Based on a  diffusive-convective model, the origin of the Urania Basin stratification has be dated to 1650 years B.P., and may be linked to a major earthquake in the region. This deep-water basin characterized by an expansion of the seafloor into the water column, a 'zero-gravity' environment where particle are capable of staying in suspension for long times, and with a highly diversified microbial life that has more affinity to the deep subseafloor than to the water column could be a model system for life in other planets and moons (e.g. Europa).

 

 

Watch Ivano’s MLML Seminar Presentation Below:

Return of the “age of dinoflagellates”: unusual dinoflagellate dominance in northern Monterey Bay detected with automated imaging flow cytometry-May 2nd

Alexis Fischer, UC Santa Cruz

Moss Landing Marine Labs Seminar Series - May 2nd, 2019

Hosted by The Invertebrate Zoology Lab

MLML Seminar Room, 4pm

Open to the public

Alexis is a Delta Science Postdoctoral Fellow who is interested in the physical, chemical, and biological factors that promote development of blooms, especially harmful algal blooms (HABs). To explore phytoplankton dynamics on daily timescales in the Monterey Bay and San Francisco Bay, she uses an Imaging FlowCytobot (IFCB), an in-situ automated submersible flow cytometer that generates high-resolution images of particles in-flow taken from the aquatic environment. Alexis completed her PhD in Biological Oceanography in the Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program. Her dissertation focused on cyst dormancy cycling and bloom initiation of Alexandrium catenella, a HAB dinoflagellate that causes paralytic shellfish poisoning.

Abstract:

Monterey Bay is the largest open embayment along the U.S. West Coast and is subject to intense autumn dinoflagellate blooms, many of which are harmful algal blooms. During 2004–2007 these blooms were so dominant that it was called the “age of dinoflagellates”. In 2018, after a decade absence, these conditions returned with an abundance of dinoflagellates documented at the Santa Cruz Municipal Wharf (SCW) using an Imaging FlowCytobot (IFCB). The IFCB combines video and flow cytometric technology to capture images with chlorophyll fluorescence above a trigger threshold. A phytoplankton image training set was amassed and used to train a 28-category random forest classifier that has 90% overall accuracy. The dominant dinoflagellate was Akashiwo sanguinea, exceeding 40 cells mL-1 and 500 cells mL-1 in March and May, respectively – a time of year when dinoflagellates are characteristically rare. Also abundant were Prorocentrum spp., Ceratium spp., and Gymnodinum spp. – all “upwelling relaxation” dinoflagellate taxa (Smayda 2002). During the winter and spring, pulses of increased dinoflagellates were associated with wind reversals, relaxation of upwelling, water column stability, and river discharge, which would have created a retentive, nutrient-rich region at SCW. These daily dynamics were also reflected in interannual drivers of anomalous dinoflagellate abundance at SCW. A partial least-squares regression was applied to a 7-year de-seasonalized weekly SCW timeseries. Winds from the west and south, increased river discharge, and negative NPGO and ENSO anomalies could explain 80% of anomalous dinoflagellate chlorophyll from January through May. High-frequency IFCB sampling and our coastal phytoplankton classifier will continue to improve our understanding of harmful dinoflagellate bloom development and better inform monitoring decisions.

New laser-imaging technology elucidates form, function, and ecological impact of deep sea, giant larvacean mucus houses -May 9th

Kakani Katija, MBARI

Moss Landing Marine Labs Seminar Series - May 9th, 2019

Hosted by the Ichthyology Lab

MLML Seminar Room, 4pm

Open to the public

Kakani received her PhD in Bioengineering at the California Institute of Technology and specializes in biological fluid mechanics and in situ imaging methods. She is currently a Principal Engineer and Principal Investigator at MBARI, with funding provided by the Packard Foundation, National Geographic Society, NOAA, and NSF-OTIC/IDBR. Kakani has been named a National Geographic Emerging Explorer in 2011 and a Kavli Research Fellow in the National Academy of Sciences in 2013.

Abstract:

The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet remains one of the least explored. Little-known marine organisms that inhabit midwater have developed life strategies that contribute to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Although significant advances in underwater vehicle technologies have improved access to midwater, small-scale, in situ fluid mechanics measurement methods that seek to quantify the interactions that midwater organisms have with their physical environment are lacking. Here we present DeepPIV, an instrumentation package affixed to a remotely operated vehicle that quantifies fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient suspended particulate, fluid-structure interactions are evaluated on a range of marine organisms in midwater (and the benthos). Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function. Future technologies (currently in the development pipeline) that will enable study of organismal ecomechanics in the deep sea will also be discussed.

 

 

Physiological constraints and life history trade-offs drive marine mammal behavior-January 31st

Roxanne Beltran, UC Santa Cruz

Moss Landing Marine Labs Seminar Series - January 31st, 2019

Hosted by The Vertebrate Ecology Lab

MLML Seminar Room, 4pm

Open to the public

Roxanne obtained her PhD in 2018 from the University of Alaska
Fairbanks studying behavior and life history phenology in the world’s
most southern mammal, the Weddell seal. For her postdoctoral research
at UC Santa Cruz, Roxanne hopes to better understand the strategies
that seals use to survive and thrive in the open ocean; specifically,
how their behavior and survival may be impacted by our changing
planet. With funding from National Geographic, Roxanne is deploying
trackers with a research team to learn how elephant seal pups navigate
and dive during their first ocean migration. In addition to her
research, Roxanne is passionate about science communication and
inclusion of underrepresented minority students in scientific
research. She has written a children’s book, “A Seal Named Patches”
and has visited more than 4,000 K-12 students to share her work.
www.roxannebeltran.com

Abstract:
The life histories of semi-aquatic mammals are characterized
by various challenges that arise from the conflicting dynamics of
living both on land and at sea. Animals have evolved a variety of
solutions to cope with these challenges, from flexible life history
phenologies to wide-ranging behavioral strategies. The resulting
variability within- and between-species provides an opportunity to
evaluate how trade-offs are driven by a combination of physiological
constraints and ecological processes. Using a combination of
free-ranging and captive pinnipeds, I show how animal behavior can be
used to predict potential responses to global change.

Under Pressure: Coastal upwelling and Climate Change – September 6th, 2018

Marisol Garcia-Reyes, Farralon Institute
Moss Landing Marine Labs Seminar Series - September 6th, 2018

Hosted by the Physical Oceanography Lab

MLML Seminar Room, 4pm

Open to the public

Marisol has studied coastal upwelling for over 10 years, focusing on its variability, and how it relates to climate (García-Reyes et al., 2015) and its marine ecosystem (García-Reyes et al., 2013). She has a background on physics and atmospheric sciences, but she's an oceanographer at heart. Her current research includes a comparative study on climate impacts on the California and Benguela upwelling ecosystems (see CalBenJI project), and development and analysis of Indicators of ocean and climate variability in California (see the MOCI project)

Under Pressure: Coastal Upwelling and Climate Change

Is your research subject, life or hobbies part of the California Current or coast? Do you wonder (and get asked) how is it impacted by climate change? This seminar is for you. Back to the basis of coastal upwelling. We will explore the following questions: How coastal upwelling, the process that brings nutrient rich water to the coast and fuels a rich marine ecosystem, depends on global climate? How is this a global phenomena? How it is and will be impacted by climate variability and change? What do we know and what do not know about these changes? And how they impact our coast and our lives?

Using Transcriptomics and Reverse Genetics to Understand Cnidarian-Dinoflagellate Symbiosis – September 13th, 2018

Phillip Cleaves, Stanford University
Moss Landing Marine Labs Seminar Series - September 13th, 2018

Hosted by the Invertebrate Zoology & Molecular Ecology Lab

MLML Seminar Room, 4pm

Open to the public

Using Transcriptomics and Reverse Genetics to Understand Mechanisms of Cnidarian-dinoflagellate Symbiosis

Phillip A. Cleves1, Cory J. Krediet1, Erik M. Lehnert1, Benjamin M. Mason1, Marie Strader2, Mikhail Matz2, and John R. Pringle1

1Department of Genetics, Stanford University, Stanford, CA, USA

2Integrative Biology, The University of Texas at Austin, Austin, TX, USA

 

The endosymbiosis between corals and dinoflagellate algae (genus Symbiodinium) is essential to the energetic requirements of coral-reef ecosystems.  However, coral reefs are in danger due to elevated ocean temperatures and other stresses that lead to the breakdown of this symbiosis and consequent coral "bleaching".  Despite its importance, the molecular basis of how corals establish and maintain a healthy symbiosis is poorly understood, in part because of the lack of a tractable genetic model organism. The small anemone Aiptasia is symbiotic with Symbiodinium strains like those in reef-building corals but has many experimental advantages over corals, making it an attractive laboratory model for cnidarian symbiosis.  To explore the possible transcriptional basis of heat-induced bleaching, we used RNA-Seq to identify genes that are differentially expressed during a time course of thermally stressed symbiotic and aposymbiotic Aiptasia strains. We observed a strong upregulation of hundreds of early stress response genes at time points long before bleaching begins in symbiotic anemones. The putative promoters of these early stress response genes are enriched for NFKB and HSP1 transcription factor binding sites suggesting that many of these stress response genes share core transcriptional inputs. The overall expression patterns were similar between the symbiotic anemones and the aposymbiotic anemones, indicating that many of the expression changes are not specific to the presence of the algae. However, blocking protein synthesis or HSP1 DNA binding with pharmacological inhibitors during this up-regulation results in more severe bleaching suggesting this symbiont-independent early stress response is protective against thermal stress and bleaching.

Genetic tools are needed to allow rigorous functional testing of the roles in symbiosis of candidate genes and pathways. As a first step in developing transgenic methods for Aiptasia, we have successfully expressed the photoconvertible Kaede fluorescent protein in larvae by microinjection of capped mRNA into 1-cell zygotes obtained by spawning in the laboratory.  This technique should allow both expression of tagged proteins for localization studies and the overexpression of candidate genes to analyze gain-of-function phenotypes.  In addition, we have promising results for two different methods for analyzing loss-of-function phenotypes in Aiptasia.  First, we have microinjected zygotes with translation-blocking morpholinos targeting the FGF1a gene, which has been shown to be required for apical-tuft formation in another anthozoan.  Preliminary results show apparent loss of apical-tuft formation in successfully injected larvae, suggesting that the Fgf1a protein was effectively knocked down.  Meanwhile, we have successfully used the CRISPR-Cas9 technology to create genetic changes in embryos of the coral Acropora millepora.  Through the establishment of both gain-of-function and loss-of-function methods in both Aiptasia and corals, Aiptasia will be a uniquely powerful genetic model organism (with year-round spawning) for the study of cnidarian-Symbiodinium symbiosis, and the discoveries made can be validated using similar technologies in corals.

 

We thank the Gordon and Betty Moore Foundation and the Simons Foundation for support.

 

Scientific Art… or Artistic Science? – September 20th, 2018

Ron Holthuysen, Scientific Art, Inc.
Moss Landing Marine Labs Seminar Series - September 20th, 2018

Hosted by the Phycology Lab

MLML Seminar Room, 4pm

Open to the public

In 1980, Ron Holthuysen  founded Scientific Art Studio.  After teaching, biology, chemistry and physics for a few years, he decided to follow his desire to create natural history exhibits.  There was not really a job in which he could explore and combine his interests in taxidermy, wild life photography, film, design, history, paleontology, geology, sculpture, painting, engineering, teaching and be an inventor all at the same time.  Ron has always had the need to involve himself in a wide range of fields, and to challenge himself with interesting projects.  The result is Scientific Art Studio as it is now.

During the last 35 years, under the name of Scientific Art Studio He has been able to take on and, mostly to great satisfaction of his clients, finalize projects of a very wide variety.  From Natural History exhibits to special effects for motion pictures and television, from Museum taxidermy to mechanical costumes for a Las Vegas show, from the restoration of artifacts to the design of rock show stages, and much more.  The source of his inspiration and the focus of his interest has been always Nature in its broadest embrace.  It gives Ron great satisfaction to reconstruct extinct animals and plants, to work with scientific specialists and to dabble in whatever  draws his attention.

Scientific Art or Artistic Science ?

The initial reaction of members of the Scientific World and of the Art World often is to distance themselves from one another’s realm of interest.

Science:

A world of exactness and no fuzzy, artsy stuff.

Rigid discipline.

Art:

Seeking for the absolute freedom of self expression.

No restraints.

Absolute separate worlds, right ?

Think again or better: Look , listen, smell and feel again.

Science and Art are, in my opinion, co-dependent siblings.

Both realms study and investigate and interpret the world we live in.

This talk features the some of the  visualizations and interpretations of our world through Scientific Art (or Artistic Science)

Watch Ron’s MLML seminar presentation below: