Taking Up Autonomous Reef Monitoring Structures (ARMS)

DCIM100GOPROGOPR2741.By Amanda Heidt, Invertebrate Zoology Lab

It's been a bit...vertebrate-y on the blog lately, so today we're going to hear about one of the ongoing projects of the Invertebrate Zoology lab here at Moss Landing! Our principle investigator, Dr. Jonathan Geller, is a coauthor on a recent paper to come out of our collaboration with the Infinite Diversity project, whose members include representatives from NOAA, the Smithsonian, San Diego State University, UCLA, and international scientists across Indonesia. With funding provided by the National Science Foundation, the ultimate goal of this project has been twofold: to foster international collaborations among marine scientists and to better understand marine biodiversity along geographic and anthropogenic (human-induced) stress gradients, with specific interest in tropical coral systems.

A thorough understanding of the ways in which we affect our environment and how these effects might play out under future climatic scenarios is of increasing importance, and it requires a method that is both standardized and tractable over time. So, let me tell you a little story. When I first started imagining this post almost a year ago, I had just spent a month at sea, diving at remote sites to collect field instruments that could then be brought back on board and analyzed. They were essentially stacks of PVC plates, held apart by small plastic spacers, which were anchored to the reef and left to "marinate" for years until they became nearly continuous with the reef itself. These pieces of equipment were ARMS (known in longhand as "Autonomous Reef Monitoring Structures"), and they represent the answer to the question "How do we provide a systematic, consistent, and comparable method for analyzing biodiversity across broad scales?"

ARMS
ARMS structure, deployment, and recovery after a few years out on the reef.

Read More

Working with “mer-dogs” aka California Sea Lions

mason cole profile pictureBy Mason Cole, Vertebrate Ecology Lab

This post is part of Dr. Gitte McDonald’s marine mammal class blog series.

MLML Director Dr. Jim Harvey likes to say that harbor seals are the “cats of the sea”.  If that’s true, then California sea lions are the rambunctious young puppy dogs of the sea.  But not those little baby fluff-ball puppies; no, more like that almost-full-grown, 90-pound wrecking ball.

Many a commercial fisherman would cringe to read this, but I love working with sea lions.  They earned their place in my mind as “mer-dogs” for more than just their energy and enthusiasm: they are also particularly intelligent, with striking personalities and an impressive capacity to learn trained behavior.

Nemo derpy head strap 2
Nemo with his prize herring - good boy!  (Photo credit: Mason Cole.)

Read More

Disentangling a Difficult Situation

By Bradley Wilkinson, SJSU Graduate Student

This post is part of Dr. Gitte McDonald's marine mammals class blog series.

IMG_4425
The lighthouse on Southeast Farallon Island offers an amazing view of the surrounding Gulf of the Farallones for whale observations. Photo: Bradley Wilkinson

I had never seen so many whales before in my life. Standing atop Southeast Farallon Island, bracing against the rails of a relic lighthouse, I commanded an unequaled view of the surrounding seascape. To the northeast, Pt. Reyes stood before Bodega Bay, forming an extreme limit to my far-reaching gaze. The Golden Gate Bridge was blatantly obvious to the east, framed nicely against the hustle and bustle of San Francisco. To the south and west, endless blue. Huge container ships waiting for port entry outlined the invisible lanes of industrial traffic.

But the whales. The whales were everywhere, stealing the proverbial show. Spouts popped off in every direction, grouped in conglomerates of nearly a dozen on occasion. In total, I counted over eighty whales of three species that afternoon, in only one hour of effort. The extreme productivity of the Gulf of the Farallones had attracted this concentration of cetaceans, a predictable patch of food nested with the dynamism and variability of the oceanic environment. But just below the surface, sharing the water column with swarms of krill and schools of anchovy, lurked a lethal threat. I had seen them while onboard the sailboat to the island. Although only a small part of each one was visible at the surface, I knew much more lay beneath. This paradoxically obvious yet invisible threat was both insipid and borne of abandonment. Derelict fishing gear.

IMG_4382
Humpback whale with damaged flukes. This animal most likely had these injuries inflicted by an entanglement event that cleaved the tail. Photo: Bradley Wilkinson

And of course, threats breed consequence. A few days later, I witnessed this firsthand. While conducting a seabird diet assessment on another end of the island, a group of whales fed a bit offshore. Taking a break to observe the diving giants, one of the members of our party suddenly exclaimed that an individual in the feeding group was missing a tail. Surely not, we thought. Perhaps the flukes had been seen at an odd angle, performing an optical trick. We studied the group further. Then we all saw it; a whales spouted, rolled, and began to dive. As it arched its back and raised its tail, it was all too obvious that both of the flukes of the animal were gone. It was as if they had been sheared off by a gigantic pair of scissors. But of course we knew that wasn’t the case. The most likely candidate was an entanglement event with derelict fishing gear.

Unfortunately, this is not a rare occurrence along the California coast. In fact, statistics point to 2016 as the most frequent year of entanglement events on record. Whales, unable to detect the long lines of nylon suspended in the water, become trapped in gear as it wraps around body parts ranging from mouths, to flukes, to flippers. Fortunately, there are people who are trying to help. California Whale Rescue is a group of dedicated professionals who not only free entangled whales when reported, but work with both the industry and the public to solve this issue from the start. Together, they look to help stem the tide of increasing entanglements. To learn more about this group and how you can do your part to prevent whale entanglements like the one described here, please visit http://www.cawhalerescue.org. Thanks also go to Point Blue Conservation Science and Farallon National Wildlife Refuge for aspects of this post.

IMG_4316
A passing blue whale takes a breath, leaving a signature blow. Photo: Bradley Wilkinson

A Day on the Water Tagging Whales

IMG_20170428_070106_011By Brijonnay Madrigal, Vertebrate Ecology Lab

This post is part of Dr. Gitte McDonald's marine mammal class blog series. 

Tagging marine mammals is a highly difficult procedure and a skill that requires extreme finesse from scientists. Due to the high speeds that large baleen whales travel and the short amount of time their dorsal side is exposed at the surface, it requires a quick deployment and impeccable timing. When a whale is at the surface, it usually comes up for a few breathes before diving down. Therefore, there are only a few moments when tagging is possible. Being able to participate in such fieldwork was very exciting for a group of MLML students. This April, students in MS 211: Ecology of Marine Turtle, Birds and Mammals had the opportunity to aid Dave Cade in his research in Monterey Bay.

We departed on the John Martin early on a clear, sunny morning. Our role that day was as the support boat for the tagging boat, the Musculus. Aboard the Musculus was a small tagging team comprised of Dave, the tagger, and John Calambokidis, the boat driver. John Calambokidis, a research biologist and founder of the Cascadia Research Collective, is one of the world’s most experienced whale researchers. The Musculus remained in close proximity to the Martin as the support vessel and we maintained corresponded with the tagging team as the day proceeded.

groupshot_Mar2017
A group of students in the marine mammal field class enjoy observing whales from the top deck of the John Martin [Photo Credit: Jennifer Johnson, MLML student]

tagging_Mar2017
The tagging boat is approaching two humpback whales to deploy a tag under the NMFS permit # 20430 and ONMS permit MULTI-2017-07 [Photo Credit: Jennifer Johnson, MLML student]
We scanned the horizon for any blows to indicate the whale’s presence. Alas… there she blows!!! Once a whale was spotted, the Martin traveled towards the animal to see if it was a potential tagging candidate. A group of students were situated at the top deck of the boat with the best view in order to take photos for photo identification purposes. Pictures taken were compared to photos in a photo identification guide of known humpback whales in the Bay. Students were able to compare identifying features like dorsal fin shape and flukes patterns to identify specific individuals. Detailed notes were recorded on number of whales in the area, distance between whales and the boat and tag information.

topdeck_Mar2017
MLML students Heather Barrett and SJSU student Olivia Townsend record data from the top deck of the John Martin [Photo Credit: Jennifer Johnson, MLML student]
Although we were constantly on alert for whales, the students on the support boat had various roles. A few students ran the echosounder, an instrument that uses sonar to determine depth and produced pings at three frequency ranges in order to map the prey within the water column. Once a whale was found, the Martin traveled in small and large square shape tracks around the whale, echosounder pinging continuously, in order to map prey in the area around the whale.

dropping CTD_Mar2017
MLML student Jennifer Johnson and MLML faculty member and instructor of the course, Gitte McDonald, deploy the CTD [Photo credit Mason Cole]
During the day, we had the opportunity to witness the tagging process from a distance. As a whale surfaces, the boat must be positioned in a precise manner and approach the whale at a fast-enough speed to come alongside the whale parallel for the tagger to place the suction cup tag on an animal the size of a school bus. As the whale surfaced, the boat sped up to get in line with the whale. The tagger extended the pole with the tag attached to the end and…WHOMP! The tag hit the whales skin and detached from the pole. The suction cups on the bottom of the neon colored tag kept it adhered to the whale’s back. Success!! Once the tags were on the animals, students used telemetry to find the tagged animal. The tags emitted a ping at a specific frequency which the telemetry instruments could detect. With arm extended, students would move the instrument 360 degrees to hear beeps. When the beeping got louder, this indicated the presence and directionality of the tag. At the end of the cruise, CTD deployments were also conducted to collect salinity, temperature, and dissolved oxygen levels. As we headed back to Moss Landing harbor at the end of the afternoon, I think all the students could agree that it was a very fulfilling day. Not only did we contribute to ongoing whale research, but we had the opportunity to aid a fellow graduate student with his PhD work that will yield insightful information about predator-prey dynamics of humpback whales in Monterey Bay. This collaboration between Hopkins Marine Lab not only benefits the Moss Landing students that are able to partake in local research efforts but also gives Hopkins the opportunity to operate out of the Moss Landing harbor and have access to the MLML vessels. Goldbogen lab research is conducted in close collaboration with MLML director, Jim Harvey, and research faculty Alison Stimpert.

telemetry_Mar2017
SJSU student Brad Wilkinson is stationed at the bow using telemetry to find the location of the deployed tag [Photo Credit: Jennifer Johnson, MLML student]
Dave Cade, a PhD student in the Goldbogen Lab at Stanford, studies predator-prey dynamics of humpback whales and ecosystem ecology in Monterey Bay. The goal of his research is to study the kinematics and success of foraging Humpback whales on different prey types. To do this, he used suction cup tags to collect accelerometer, magnetometer, basic audio and gyroscope data. This is a collaborative project involving researchers from Hopkins Marine Station, Cascadia Research Collective, and Moss Landing Marine Laboratories. This work was completed under permits NMFS permit #20430 and ONMS permit MULTI-2017-07.

Monterey is Expensive: The cost of disturbance

By Heather Barrett, Vertebrate Ecology Lab

27008_692181795038_5339945_n
Heather Barrett recording sea otter behavior during a disturbance scan.

The crisp morning begins with stretches, a barrel role here and there, and one of the members breaking off to search for a crab breakfast. The raft bobs as the distant boat wake lifts each otter in a wave; rocking them gently in a water cradle. There are five mothers with cotton-ball pups that begin the tedious nursing and grooming process, lifting the plush bodies and breathing warm air in to their Einstein frizz. But the calm morning routines will soon be disrupted and turn to disorder. The bright colored beasts have arrived, aiming the kayak bows towards the otter raft, paddles drumming as they hit the surface of the water.

Most human disturbance is unintentional. However, this naiveté does not eliminate the potential behavioral or physiological consequences for wildlife. Simply our presence, especially when too close, can impact certain species by initiating a stress response. Stress hormones release, causing an increase in heart rate, rise in blood pressure, suppression of feeding and reproduction, and modulation of immune function 1. This is critical in acute stress response, for it allows for a quick reaction during a potentially threatening situation. But what if this becomes chronic?

10400087_584399187248_3611792_n
Sea otter raft that experiences high human traffic at Jetty Road, Moss Landing.

Chronic stress leads to prolonged exposure to these stress hormones, which can cause muscle wasting, bone thinning, reproductive failure, and immune deficiency 1. These physiological responses are usually undetected in wildlife, which can portray a false sense of acceptability for disturbance 2. Behavioral responses tend to be clearer since they are visually detectable. Individuals will become alert, move away, and show avoidance or even aggression 3. All which have an energetic cost. With these varying responses, why is disturbance particularly a concern for sea otters?

As a keystone species, sea otters have a disproportionate effect on their surrounding environment, enhancing local biodiversity 4. They exhibit this strong influence on their coastal community through their voracious appetite, controlling grazer populations 4. With little fat storage and only dense fur to keep warm, sea otters use their high metabolic rate to maintain their internal temperature in a cold marine environment. Since they use energy to keep warm, they must consume a quarter of their body weight in food each day to fuel this heat production 5.

So picture an exhausted sea otter mother: using energy for lactation, heat production, foraging, and pup care; imagine what it would be like to have constant disturbance from people recreating in the bay. If already living near physiological limits, what is the energetic consequence when human disturbance increases the cost? To answer this, it is important to understand the types of disturbance and create a baseline of behavioral response.

Abram_Sea Otter Photo
Female sea otter illustrating behavior to look for when recreating near sea otters: Head raised and alert. This means you are too close.

Sea Otter Savvy is spearheading the sea otter disturbance data collection with citizen science and educating the public through outreach programs. As a graduate student at Moss Landing Marine laboratories, I am thrilled to participant in the data collection and honored to use this information. I will couple this with the previously collected metabolic data from University of California Santa Cruz 5,6 to investigate the energetic cost of disturbance of sea otters in Monterey Bay.  This unique collaboration, and inclusion of graduate research, benefits the scientific community, the public, and can provide information to agencies making wildlife policy and management decisions.

If you are interested in learning more about Sea Otter Savvy and the current disturbance project, please visit the website: http://www.seaottersavvy.org.

References

  1. Hill, R.W., Wyse, G.A., Anderson, M. and Anderson, M., 2004. Animal physiology (Vol.2). Massachusetts: Sinauer Associates.
  2. Sorice, M.G., Shafer, C.S. and Scott, D., 2003. Managing endangered species within the use/preservation paradox: understanding and defining harassment of the West Indian manatee (Trichechus manatus). Coastal Management, 31(4), pp.319-338
  3. Gill, J.A., Sutherland, W.J. and Watkinson, A.R., 1996. A method to quantify the effects of human disturbance on animal populations. Journal of appliedEcology,pp.786-792.
  4. Estes, J.A. and Palmisano, J.F., 1974. Sea otters: their role in structuring nearshore communities. Science, 185(4156), pp.1058-1060.
  5. Thometz, N.M., Tinker, M.T., Staedler, M.M., Mayer, K.A. and Williams, T.M., 2014. Energetic demands of immature sea otters from birth to weaning: implications for maternal costs, reproductive behavior and population-level.
  6. Yeates, L.C., Williams, T.M. and Fink, T.L., 2007. Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). Journal of Experimental Biology, 210(11), pp.1960-1970.

Exploring the beach: A gateway to science

Tyler profile picBy Tyler Barnes, MLML Geological Oceanography Lab

To say that I was not intrigued by science as a teenager would be an enormous understatement. I despised science. I often attribute uninspired teaching and an inadequate education system for this reaction, but in reality I was just a moody teenager preoccupied by other interests (for the record, I have enormous respect for the teachers and administrators that have influenced my education). My disregard for science at the time is somewhat surprising. My earliest memories included being unwillingly dragged away from the beach after hours of exploration, or learning to cast a fishing rod just right so as not to snag a tree branch. These experiences morphed into forecasting swells with my dad before surfing and competing in local junior lifeguard competitions. So why was I so uninterested in science?

Clearly, I have had a slight change of heart since then, largely due to my search for a major as an undergrad. In high school, science felt like an exercise in memorizing facts to pass a test. In college, I started making connections. I learned about how the tectonic history of continental margins influences ocean swells (and thus, my preferred surf breaks). I discovered the connection between watershed practices and water quality. Science became a system-based approach to explain natural phenomena that I cared about deeply, rather than a memorization drill.

IMG_4484

IMG_4469
Tyler setting up the terrestrial laser scanner to map the beach and dunes near MLML.

Fast-forward a few years and I find myself part of the geological oceanography lab at MLML. So what do I do here? Basically, the same thing I did as a toddler—I explore the beach. To get technical, I assess small-scale beach variability using ground-based LiDAR. In 2009 the US Geological Survey completed a California-wide coastal change project, finding the highest long-term erosion rates in Monterey Bay, about -0.6 m/y over about 120 y (Hapke et al., 2009). This conclusion presents numerous local challenges as beaches and adjacent dunes function as the sole barriers between land and sea. In response to this finding, a terrestrial laser scanner, commonly known as ground-based LiDAR, is employed to create high-resolution 3-D maps. Change in terms of beach volume, mean seal-level contour, foredune position, etc. is assessed by surveying the same beach over time. My thesis research, as well as other research within our lab, strives to understand coastal change in Monterey Bay. This work is supported by various organizations through grants and scholarships, including the California State University Council on Ocean Affairs, Science, and Technology and the Monterey Bay National Marine Sanctuary.

Dune

DuneErosion
Moss Landing beach and dunes before (top) and after (bottom) a series of storms this winter.

I still have days when I despise science. I am a grad student after all. But those days are dwarfed by awe I experience when talking about the processes behind mountain building or the feeling of uncovering trends in my data for the first time. I do not think I will ever get tired of exploring the beach.

 

References

Hapke, C.J., Reid, D., Richmond, B, 2009. Rates and Trends of Coastal Change in California and the Regional Behavior of the Beach and Cliff System. Journal of Coastal Research, Vol. 25, No. 3 pp. 603-615.

Environmental Changes are Influencing Individuals, Not Just Populations

By Abram Fleishman, San Jose State University graduate student

Each December my news feeds, from Facebook and Twitter to professional listservs and
mainstream news sources, are inundated by a flood of stories about one bird. Not one
species of bird, but actually a single individual living on one of the most remote islands in one of the most remote archipelagos in the world. A bird that if it was not beautiful, elegant, and most of all old, no one would care about.

Wisdom_Naomi_Blinick_bg
Wisdom preens her freshly-hatched chick on Midway Atoll. (Photo: Naomi Blinick)

Wisdom is a Laysan Albatross that nests on Midway Atoll at the far end of the Hawaiian
archipelago. While part of Hawaii, this is not the tall volcanic tropical paradise you picture when your friend tells you she is going on vacation. Midway is halfway between North America and Japan, an ancient sunken island that now only scratches the surface of the Pacific. Once a bustling military base during WWII, Midway is now a wildlife refuge and home to several million seabirds.

Wisdom was first banded in 1956 by a biologist named Chandler Robbins as part of the Pacific Biological Survey (see her profile here). She was banded as an adult, which means her exact age is not known, but because Laysan Albatrosses do not nest until they are ~5-8 years old, she is at least 66 years old. This makes Wisdom the oldest wild bird ever recorded, which has been the focus of much of the press that she has received. Perhaps just as interesting and impressive is that she has been laying an egg each year (albatrosses only lay a single egg) and even hatched a chick this year at age 66! Her life has been heavily chronicled by researchers, and you can follow along here.

Recently, at the 43 rd Annual Meeting of the Pacific Seabird Group in Tacoma, Washington, I listened to Dr. George Divoky speak about changes he has observed in a colony of Black Guillemots, a small northern seabird, which he has been monitoring since 1970. The changes to the Arctic over his career have been vast: the Arctic summer is now longer (number ice free days) and the ice cover on the Arctic Ocean has decreased, driven by increased temperatures. In other words: Climate Change. We often think of climate change as affecting animals at the population-level: range shifts over decades, or declines over generations. But George pointed out that changes are happening at the individual-level. He used Wisdom as an interesting example, pointing out that she has lived through vast changes to her environment since the 1950s. For example, during Wisdom’s life, CO2 concentrations in the atmosphere have increased to 340% over preindustrial (1700) levels (source). CO2 is recognized as one of the most abundant greenhouse gases directly contributing to increase in the global mean temperature. When you plot the data the pattern is striking. So George got me thinking: what other changes have occurred during Wisdom’s lifetime?

CO2_1800-2015
Global mean carbon dioxide (CO2) concentrations measured in parts per million (ppm). Data compiled by the EPA from 10 different sources. (source)
LAAL_Pplastic1920-2015
Global plastic production measured in millions of tonnes. (source)

Another key change that Wisdom has experienced is the accumulation of plastic debris in the ocean. When Wisdom hatched in the early 1950s, plastic was just becoming part of daily life. Since that time, global plastic production has increased rapidly, and ever since plastic entered the public domain, it has made its way to the ocean. Plastic’s durability, strength, and lightweight nature — the attributes that make it so appealing to us — also make it persist in the environment. In some parts of the world’s oceans, far removed from population centers along the coasts, there are 6 times more micro-plastics than plankton[1]. As a visual forager, Wisdom has had to learn the difference between this new man-made, potentially toxic substance and her usual food. Albatrosses are not particularly well suited for such decision-making, having to fight millions of years of evolution that point toward the mentality that “if it floats, it’s probably delicious”. Each year thousands of albatross chicks and adults die due to plastic ingestion.

LAAL_Pop1920-2015
Laysan Albatross population nesting on Midway Atoll. The population has increased from an estimated "thousands of pairs" in the early 1900's to 450,000 pairs counted in 2016. (source and source)

While these two examples show a depressing situation that describes the disturbing impact that humans are having on our planet, not all changes that Wisdom has seen are negative. Midway was once a thriving and strategic military base with over 3,500 people living there during World War II. Before that, a vibrant and destructive demand for albatross eggs (for food), feathers (for women’s fashion) and guano (for fertilizer and explosives) depleted albatross populations across the North Pacific. As a result, albatross populations were smaller when Wisdom was born. Over Wisdom’s lifetime however, Albatrosses on Midway have recovered from a low of ~100,000 pairs in 1956 to ~450,000 pairs counted in 2016.

NSB_0991-2 copy
Midway Atoll is home to more than 450,000 breeding pairs of Laysan Albatross.

While it is not all doom and gloom, earth is currently in a state of rapid change. Humans are reconfiguring and short-circuiting the processes that have shaped the planet that we know. The timeframe that we are setting is so much faster then past changes, that what the future holds is unknown. Wisdom has survived, and even thrived, in this environment of change, at least up to now. This gives me hope that the capacity to adapt is large in much of the natural world.

Life on the beach: My first field season as an elephant seal researcher

By Kate High, SJSU undergraduate

Third installment of the blog series by students enrolled in MS 211: Ecology of Marine Mammals, Birds and Turtles with faculty member Dr. Gitte McDonald. 

Mel_Resighting_Permt
Mel re-sighting elephant seals. Photo source: Kate High

 

Interning in the Vertebrate Ecology Lab at Moss Landing Marine Laboratory this past year has given me countless opportunities to participate in activities most undergraduate students at SJSU might not know exist. I began training for elephant seal research at Año Nuevo State Park at the beginning of January. Even though I’ve had a lot of field experience, I can honestly say I have never been more nervous about a field day in my life.

I was getting trained to help with tag re-sights as well as weaner weighing. This was my first time working with pinnipeds and of course we were working with the largest North American species. There are a couple things that stick with me from that first field day. The first one is Dr. McDonald’s ultimate rule “First is our safety, then the animal’s, then comes the science.” The second was being surprised that most males were calm and paid little to no attention to us. This is in contrast to some females, who made my heart jump because of a reaction I got from some seals.

The first time out to Año Nuevo, your head feels like it’s spinning around because there’s so much activity on the beach. You have to be alert and aware of your surroundings, all while trying to collect accurate data.  But through all the chaos there are moments when you can appreciate the beauty of the surroundings and the excitement of the work.  Before you know it, the season has wrapped up and the beach at Año Nuevo seems empty.

EsealSunrise
Elephant seal sunrise (Photo source: Kate High)

There are many memories I will cherish from my first season at Año. I’ll never forget walking in the crisp air as the sun was rising, and being able to both hear and see the male elephant seals trumpeting in the distance. There were weeks where it seemed as if you couldn’t walk anywhere on the beach because there were so many females and pups packed in. I loved doing tag re-sights of pups and coming across a group of deep sleepers that happened to be snoring, or weaners that would accidentally roll down a hill. I’ll always remember my individual trip out with Dr. McDonald as a great chance to ask questions and to hear about her experiences in the field. Although some days it was windy and raining and we were wet and cold, being out in the field and having this experience was a privilege.

Some might wonder if the researchers doing field work out at Año Nuevo get tired of their work out there - my answer would be an immediate “No.” The group of researchers and volunteers I worked with were always enthusiastic and supportive, and willing to teach. I was always ready for field day as soon as my alarm went off. I would tell myself before I went out each time, “A million people would kill for this experience and to be in your shoes. Don’t take today for granted.” And as cheesy as it sounds, Año Nuevo never got less magical for me.

A Day In the Life of an Elephant Seal Biologist at Año Nuevo State Park

By Jenni Johnson, MLML Vertebrate Ecology Lab

Today, we have another post courtesy of MS 211: Ecology of Marine Mammals, Birds and Turtles, this time from Moss Landing student and author Jenni Johnson. She is going to talk about the hectic but rewarding work involved in elephant seal research at Año Nuevo State Park. -Amanda Heidt Blog Manager

BEEP! BEEP! I roll over to turn off my alarm and read the clock: 4:30 a.m. Begrudgingly I arise, slip into my field clothes, and head to the kitchen to make breakfast before beginning the forty-five minute commute to Long Marine Lab (LML). As I drive north, I mentally prepare myself for the day ahead. Today our focus is assisting with the annual weanling weighing effort. Upon arrival at LML, the field crew assembles all necessary gear, electronically checks into the park, and then piles into the truck. As we cruise up Highway 1 the sky begins to lighten, gradually revealing the charming California coast while the truck buzzes with conversation.

Version 2

Twenty minutes later the truck pulls into the entrance of Año Nuevo and turns right down the limited access road. The progression is slow as we carefully survey the dirt road for endangered San Francisco garter snakes. I take this opportunity to observe the magnificent landscape, hoping to catch a glimpse of deer, coyotes, bobcats, or the elusive cougar. Alas, no such luck today. Instead, I admire the soft glow of the early morning light and the captivating shades of pink and orange spilling across the sky, signaling the eminent arrival of the sun. I feel excitement start to build as we park the truck.

 

Grabbing the gear, we hike to the beach, maneuvering through streams, marshes, and dunes along the way. Various animal tracks crisscross over the sand, reminding me that I am merely a guest. The elephant seal calls fill my ears, and I know we are close. We emerge onto the beach as the sun makes its morning debut atop the Santa Cruz Mountains and casts light onto the awe-inspiring scene before us. Pelicans and cormorants congregate on the western point, paling in comparison to the demanding presence of the elephant seals. Nursing females, defensive bulls, dozing juveniles, and curious weanlings cover the beaches and play in the surf. We appreciate this scene for only a moment before setting off to find our first weanling.

20160211_Weaner bleach mark

Scanning the beach for a good candidate, I can’t help but notice the diversity of rocks, shells, and bones that decorate the sand; untouched by human hands and I absorb the beauty. Within minutes we find a prime candidate, indicated by its unique bleach mark. We set down our gear, delegate tasks, and establish a plan emphasizing the safety of the researchers and animals is paramount then get to work.

One group begins to set up the tripod, attaching the scale and come-along winch to the tripod before anchoring its feet into the sand. Meanwhile, I am tasked with capturing the weanling. For this, a custom-made canvas bag is used to help protect the seal and the researchers as we collect our measurements. Rolling back the seam of the bag, I slowly creep toward the weanling. Suddenly aware of my presence the weanling raises its head to maintain visual contact. Using this to my advantage, I swiftly sweep the bag onto its head. Another researcher steps in and together we carefully wrestle the seal into the bag taking extra care not to harm its flippers. In the process, we expose its belly and identify the sex as male before securing the bag. With impressive coordination, three people position the tripod over the weanling while I connect the bag to the come-along winch via a metal weigh bar. I crank the winch lever slowly lifting the seal until he is completely suspended, record his mass, and then immediately lower him to the ground. Once the weigh bar is removed, the tripod is moved while two of us continue to collect body measurements and a fur sample. Next, we add green flipper identification tags. Two tags are inserted to indicate he has been measured and weighed. Finally, I release the weanling from the bag and estimate percent molt as he galumphs across the sand. Despite what it may seem, the process lasted only ten minutes.

ElephantSealPile

Nine weanlings later, my watch reads 9:15 a.m. and it’s time to depart. On our return hike we encounter a ranger, stop momentarily, say hello, and summarize the morning. Once again, the truck is filled with chatter, this time with questions and lingering thoughts regarding our morning. Upon returning to the labs the gear is cleaned, bags are restocked, and samples are stowed. For the team, this marks the completion of our morning. However, before my morning concludes, I must enter the data. Another forty-five minutes in the car flies by as I reflect on my Año Nuevo morning and silently appreciate the opportunity to experience this wondrous place.

All elephant seal research is performed and photos taken under National Marine Fisheries Service research permit #19108.

MLML Students at the Forefront of Marine Science

img_7425
Will Fennie in the field collecting data. Photo Source: Will Fennie

Whether it be out in the field or inside the lab, conducting research is often what people imagine as the highlight of science. However, once that research is completed, then what? For many scientists, it’s the impact of their research that is viewed as a true career highlight. MLML alum, Will Fennie, had his first taste of this success when research from his Master’s thesis contributed to a well-publicized paper on juvenile rockfish and ocean acidification.

Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics

For this study, Dr. Scott Hamilton, professor of Ichthyology at MLML, served as first author and his student, Will Fennie, served as third author.

Read More