Sebastian Caamaño
XX
XX
Congratulations to VEL student Taylor Azizeh for becoming a National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) fellow! Her MSc thesis will focus on researching the foraging ecology of emperor penguins in the Ross Sea, Antarctica, using biologging.
My endless curiosity towards wildlife led to my pursuit of a dual bachelor’s degree in Marine Science and Zoology from the University of Queensland, Australia, where I accomplished my dream of studying on the Great Barrier Reef.
Following completion of my undergraduate studies, I entered an honors research year investigating dugongs along the coast of Southeast Queensland with Drs. Janet Lanyon and Lee McMichael. During this period, I successfully pioneered a fecal DNA extraction protocol that allowed amplification of both mitochondrial and nuclear DNA from free floating dugong feces. This development enabled single nucleotide polymorphisms (SNPs) to be amplified from dugong scats, representing a breakthrough for non-invasive population genetic studies in this species.
I relocated to the United States around mid-late 2022 to reunite with my husband, and later completed an internship program at Hubbs SeaWorld Research Institute (Species Preservation Lab) with Karen Steinman, where I further acquired laboratory skills on semen quality assessments, cryopreservation, enzyme immunoassays, and hormone analyses. As of Fall 2023, I have begun working with Dr. Birgitte McDonald on a research project, focusing on the foraging ecology of emperor penguins in Antarctica. Simultaneously, I am working part-time as a naturalist on the Sea Goddess whale-watching cruise.
Sebastian Caamaño is XX
Vicky Ooi completed her bachelor's degree in Marine Science and Zoology from the University of Queensland, Australia. She then entered an honors research year investigating dugongs along the coast of Southeast Queensland with Drs. Janet Lanyon and Lee McMichael. During this period, I successfully pioneered a fecal DNA extraction protocol that allowed amplification of both mitochondrial and nuclear DNA from free floating dugong feces. This development enabled single nucleotide polymorphisms (SNPs) to be amplified from dugong scats, representing a breakthrough for non-invasive population genetic studies in this species.
She relocated to the United States around mid-late 2022, completing an internship program at Hubbs SeaWorld Research Institute (Species Preservation Lab) with Karen Steinman, further acquiring laboratory skills on semen quality assessments, cryopreservation, enzyme immunoassays, and hormone analyses. Her thesis will focus on the foraging ecology of emperor penguins in Antarctica, simultaneously working part-time as a naturalist on the Sea Goddess whale-watching cruise.
Parker Forman
Thesis Abstract:
I described the at-sea behavior of emperor penguins (Aptenodytes forsteri) during late chick-rearing at Cape Crozier. Analyzing data from eight penguins, I investigated how intrinsic factors, including sex, size, and body condition influenced their behaviors. Penguins exhibited mean trip durations of 10.6±3.4 days, covering a daily distance of 55.7±8.0 km. Penguins predominantly performed dives within the upper 200 meters of the water column (90.7±26.5%), with a smaller proportion of dives (9.3±2.0%) reaching greater depths. Deeper dives were typically associated with shallow bathymetry. Penguins conducted an average of 1,860±681 dives with maximum depths of 455.8±32.6 m and durations of 12.9±2.4 minutes. Penguins spent 66.4±14.8% and 43.9±4.4% of their time at sea resting and diving.
Penguins with similar behaviors were categorized into groups: Group I foraged near the continent and traveled to the Ross Bank, and Group II predominantly foraged near the continent. I found significant differences in foraging behaviors between the groups and sexes. The composition of these groups was influenced by sex. Group I mostly comprised males, while Group II were females and one unknown sex. Females displayed higher dive frequencies per day (Females (F):186±17, Males (M):151±4), shallower maximum depths (F: 432.2±29.4 m, M: 476.8±12.8 m), and shorter durations (F: 3.2±0.7, M: 3.9±0.3). Possible explanations for the observed differences between male and female penguins include energetic requirements, prey preference, physical characteristics, and niche differentiation, which can shape their distinct foraging behaviors.
Furthermore, results from this study indicate that penguin behaviors were also influenced by the physical characteristics and condition of their bodies. This finding suggests that there may be an optimal body condition for achieving greater diving depths. Penguins with intermediate body conditions may possess a more efficient physiological adaptation for sustained deep diving, enabling them to access resources inaccessible to individuals with lower or higher body compositions.
This study advances our understanding of late-chick-rearing penguins and the influence of intrinsic factors on their behavior. The findings indicate that emperor penguins exhibit divergent strategies influenced by sex and physical condition, leading to variations in dive behavior and bathymetry use. These sex-based disparities in penguin behavior highlight distinct ecological roles for each sex within the species. These findings provide a novel description that underscores the remarkable adaptations of emperor penguins in successfully navigating dynamic environments at Cape Crozier.
Daphne Shen
XX
Jack Barkowski
Jack’s thesis work will investigate patterns in humpback whale vocalizations along the U.S. West Coast. Jack will look at the spatiotemporal variation in humpback whale song activity over a 3 year span within the Olympic Coast National Marine Sanctuary, Monterey Bay National Marine Sanctuary, and the Channel Islands National Marine Sanctuary . He will also report the presence and acoustic characteristics of 5 specific non-song calls that have been documented in humpback whale populations around the world, suggesting that these 5 call types play an important role in social interaction. Jack hopes his work will reveal spatiotemporal differences in peak song activity that will allow for more effective management decisions aimed at reducing entanglement risk in fishing gear and ship strikes from large vessels, the two leading causes of anthropogenic-caused mortality for large whales.
Kali Prescott
Kali's thesis work will be focusing on exploring how Computational Fluid Dynamics can be used to estimate drag incurred by biologgers and other externally attached devices. She will be examining Northern Elephant Seal, Mirounga angustirostris, as a model species using 3D scans collected during the seal's haul out periods at Año Nuevo State Reserve. These scans will be used to build 3D models of the seals along with 3D models of the biologgers generated using Computer Assisted Design Software (CAD). Using a fluid dynamics program originally designed by Engineers, Kali will simulate drag and drag coefficient by placing the tagged seals models into a computer generated flow through chamber. These models will be used to identify what factors associated with biologger attachment (size, location, and number of loggers) will most impact the incurred drag. These proxies for drag will then be compared to foraging, dive, and reproductive data collected from animals tagged in real life to determine if there are any measurable impacts.
Many beach goers love to watch coastal animals resting, playing, and swimming along the shoreline, including my typical study species, the southern sea otter. However, some species are much harder to find and require extensive efforts to see them, even for the experts! During the months of August and September I worked with a small team of scientists from NOAA and the affiliated organizations Upwell Turtles and Moss Landing Marine Laboratory to survey the Oregon and Washington coastline and locate, capture, and gather valuable information on the endangered leatherback sea turtle.
Aerial survey team in front of the Twin Otter observation plane. People from left to right: Sierra Fullmer, Nick Toth (NOAA pilot), Katherine Whitaker, Karin Forney, Scott Benson, Priti Bhatnagar (NOAA pilot), Garrett Lemons. Not pictured: Vicky Vasquez and NOAA pilots Conor Maginn and Kennieth Brewer. Photo credit: Garrett Lemons
My role as an aerial observer involves scouring the seas for any signs of turtle habitat, food, and other associated species - plus on our very best days the turtles themselves! The Western Pacific leatherback sea turtle population has declined by approximately 80 percent since the 1980’s1,2. Leatherbacks face challenges all throughout their lives. Although they are largely protected at their primary nesting beaches, they still face threats at secondary nesting beaches, where adults are occasionally still harvested, and eggs poached. Upon leaving their nesting grounds, juvenile and adult leatherback turtles face a maze of fisheries as they pass through the Exclusive Economic Zones (EEZs) of many fishing nations and international waters while traversing the entire Pacific Ocean to reach the western coastline of North America. Once in North American coastal waters, adult leatherbacks spend the summer and fall months feeding on blooms of jellyfish that annually occur with upwelling events of cold, nutrient-rich water being drawn to the ocean surface1. How these leatherbacks select and re-locate these patches year after year is still unknown, and part of what we hope to investigate with our surveys. But fear not, we have figured out some clues to help us in our search.
On “fly-days” our lead researchers Scott Benson and Dr. Karin Forney have undergone intense weather monitoring and decided we face good wind and cloud conditions that should provide calm, white-cap-free waters. In our ideal weather days, the waters are so calm that we can see the airplane’s reflection on the water from 650 feet in the air! Once we get the go-ahead, we pile into our cars, head to the airport to meet our NOAA pilots, and prepare our recording equipment before strapping in and taking off!
On our first few flights, we hoped to get a coarse understanding of the environment along the Oregon and Washington coastlines and to identify areas where we might have the best luck turtle-spotting. Over the course one week, we spent 28 flight hours flying transect lines that extended from Newport, Oregon to just south of La Push, WA. With these long flight days, we collected data on water conditions, jellyfish blooms, and marine species presence within 25-30 miles of the coast. Our initial transects were spaced every four miles of latitude, which narrowed to a more fine-scaled 1-mile spacing as we focused in on the main target area. Non-turtle species data we collect not only assists with our project but can also be used in other studies such as harbor porpoise population surveys.
For these surveys we are flying a specially modified Twin Otter plane owned by NOAA that has a large “bubble window” on either side just behind the pilots and an additional belly window in the back of the plane. These windows combined allow our observers an almost 180-degree view of the water below! While surveying, each observer spends approximately 45 minutes sticking their entire head and shoulders into the windows and calling out every species of animal they see. Then when you finally start to feel a kink in your neck and think you may never make it out of the window, you rotate! My personal favorite spot in the plane is the belly window, where you lay in the back of the plane, stick your head into the small window, and watch the water, algae, and animals as you fly by. If you’re lucky enough to be in the belly on a perfect day, you can even spot your own reflection hundreds of feet below!
Lead scientist Karin Forney looking out through the belly window mid-survey.
An external view of aerial observer, Sierra Fullmer, looking through the belly window. Image was taken from below while the plane was parked on the tarmac.
Although these views sound glamorous, much of our time is spent looking through sun glare, counting tens to hundreds of animals (sometimes in the span of a few minutes), and making sure you don’t lose focus waiting to find the elusive turtle hidden amongst the algae and ocean sunfish (Mola molas).
Over the last several years of leatherback research, a trend has appeared that leatherbacks are often found in association with dense aggregations of large Mola mola, or ‘molas’, as we call them for short. Large molas are typically four to eight feet in diameter or longer and feed on the same food as leatherback sea turtles: blooms of jellyfish species including brown sea nettles (Chrysaora fuscescens) and moon jellies (Aurelia spp). While flying over the water, when we hit an area of ‘Mola mayhem’ it’s a period of excitement, focus, and a little bit of insanity – especially for the data recorder. I had the eye-opening experience of data recording through my first section of ‘Mola mayhem’ during this field season, where every observer was calling out mola sizes and numbers every second and my entire job was to record them on our digital data log as fast (and accurately) as possible. My fingers were flying so fast I even knocked a key off the keyboard! Don’t worry though, I replaced it at the end of the mayhem.
To get an idea of the mayhem picture this, you’re standing in the middle of an auction house where three different auctioneers are calling out their bids at the same time and your job is to write down everything each auctioneer is saying simultaneously and correctly. Mayhem is the only description. However, it’s extremely important data to collect to really narrow down where our turtle habitat may be, as this helps us find the few leatherbacks that are still making it through the maze of fisheries to our coastlines each year. The proof is in the results.
At the end of our third survey day, with only an hour of fuel left, our team was flying through Mola mayhem calling out large molas left, right, and center when the belly observer calmly called out “turtle” and all chatter stopped for what felt like the longest second. In this time, our pilots and data recorder marked the coordinates as fast as possible, and everyone instantly went on high alert. This was our chance. The pilots circled back, once more flying over the area while every observer was trying to look past the glare of the sun sitting low on the horizon. The pilot started a count down, “You should see it in three…two… one…” and to our amazement the turtle popped out of the glare. The entire crew erupted with excitement and started calling out directions, “turtle at your nine-o’clock, just under the wing!” We managed to circle it for approximately 15 minutes, relocating it between shallow dives and getting a good look to confirm there was no tail (which means it was not an adult male). It was a large, round female and our first aerial sighting in the Pacific Northwest since 2011!
It was the perfect ending to what had been my longest day of flying so far, and a sense of hope for the rest of our survey efforts. Now that we know where to find ‘turtle water’, we have our zone of Mola mayhem, and we know there’s still turtles out there, we hope we can find more turtles for Stage 2: boat capture and tagging. Hopefully I’ll have more updates for you all at the end of the field season, until then I’ll be one pair of the eyes in the sky!
Aerial observer, Sierra Fullmer, looking out the bubble window during a survey, watching the glassy ocean surface passing below. Photo credit: Karin Forney
References
I'm a recent graduate from Florida State University (2022), where I studied marine biology and chemical oceanography. I completed an undergraduate thesis there on biogeochemical cycles in the Southern ocean and the role that phytoplankton play in them. I collected seawater samples in the Southern ocean and analyzed the data in Ocean data view for the ongoing GEOTRACES project, which helped fuel my thesis.
I've started volunteering in the Vertebrate Ecology Lab this fall to assist with recording marine mammal strandings and completing bi-monthly surveys. I look forward to continuing to assist members in the lab and widening my exposure to marine mammal research. Broadly, I'm interested in how chemical oceanography and marine populations interact, and how studies of the two can overlap to benefit each other. I hope to narrow down my research focus and continue my education by pursuing a master's thesis.
You may not know this, but much of research here in the Vert Lab is on the ever charismatic Northern Elephant Seal! Each year, we get to work with colleagues from institutions such as UC Santa Cruz, UC Davis, Sonoma State, and many more, to investigate the lives of these incredible animals. There are dozens of research topics from biologging studies, foraging ecology, sleep studies, reproductive success, dive behavior, stress responses, and more being investigated by our little research group here at MLML and by our colleagues elsewhere.
Currently we are wrapping up a very successful field season, which typically runs from November to early June. This year we investigated the feasibility of new physiological biologgers including testing non-invasive near-infrared spectroscopy (NIRS) dataloggers to measure arterial blood oxygenation and MOxyLog sensors for measuring muscle oxygen (National Science Foundation Grant #: 1656282). These loggers will aid in future physiological studies that improve our understanding of how these animals perform long deep dives and how they are impacted by anthropogenic stressors
This year, we got to do all of this in addition to our yearly participation in the field efforts out at Año Nuevo State Park including: helping with daily resights, deploying and recovering tags at the colony, and yearly weaner weighing (All work performed under NMFS permit #: 23188).
(Take a look at this video to see more of what goes on up at Año Nuevo State Park, note this video was shot prior to the COVID-19 pandemic)
The seals are finishing up their yearly molt and soon the adult females, many of whom are pregnant, will head out to sea for their long nine month migration out into the North Pacific. We will have a reprieve from field work until they return in December. Happy Trails!
Gitte’s penguin team successfully arrived at Cape Crozier on October the 28th. Our field notes may be a little behind as they are being carried out by gracious visitors who are kind enough to carry our messages back to civilization. Early in the morning the penguin team took flight in a helicopter piloted by Heff a stoic man with many years of experience flying in Antarctica. The flight from Scott Base to Cape Crozier took about 30 minutes and we had incredible views of Mt. Erebus (12,448 ft, 3794 m). We started to gain elevation as we flew over a glacier and wrapped around a bend. Heff agilely redirected the helicopter as we dropped off the glacier and back onto the sea ice. That is when Parker and David saw their first Antarctic penguin: the mighty Adele. The land side of Cape Crozier happens to be the location of one of the largest Adele colonies. I would love to google the exact number maybe those of you reading this blog can fill that bit of information for me (my best guess is ~250,000). We also saw our first emperor penguins walking and tobogganing on the ice (more information will follow with regards to how amazing these penguins are in future updates). I digress, Heff quickly turned the helicopter and the location of our Camp was first seen. Camp Huddle is located in a “finger” (a small cove located between where fast ice and sea ice meet) of fast ice. This location is relatively protected compared to other areas but the surrounding deep blue ice indicates that this area does receive heavy winds but not on a nice day like today. The weather was perfect for setting up our camp with high visibility and relatively warm temperatures at -7 degrees Celsius.
We set up camp five polar haven tents for each of five members of the crew including Sam who is helping us establish a safe camp and walk way to the colony. We erected a medium “Polar Haven” which has a heater and is the area we will be spending most of our time when it is cold. We a great kitchen set up and a nice table that serves multiple uses such dining table and data entry portal. We also set up a bathroom tent which is a classic Scott Tent. Since we are camping on sea ice all of the structures we have at Camp Huddle required us to drill holes on the ice and anchor each corner via “V thread” method as Gitte is demonstrating in the adjacent image. The basic concept of V threading requires two drill holes that connect in the ice. A rope is then place through the opening of both drilled holes and is fastened to the corner and sides of each structure. If you thought setting up a tent was difficult on land, consider drilling 230 V thread and hand tying each knot. Luckily the weather was great and we did not have to set up camp in the wind. Cape Crozier is notoriously experiencing some of the most extreme weather on the planet. Camp Huddle is fasted to the ice at Cape Crozier and we are ready to start our penguin captures within the next few days. We had a wonderful first dinner and headed to bed exhausted and excited to finally arrive at our destination.
#Natgeoexplorer #NIWA
Huddled Up,
Penguin Field Crew