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Abstract 

GEOGRAPHIC VARIATION IN THE LIFE HISTORY AND MORPHOLOGY OF 
THE PACIFIC GEODUCK, PANOPEA GENEROSA 

 

by Gabriela Navas 

 The Pacific geoduck, Panopea generosa, is an ideal candidate to investigate 

patterns of life history variation and morphological plasticity in shell shape, as it occurs 

over a large geographic range, inhabits different marine environments, and experiences 

intense fishing pressure in some locations (i.e., Mexico and Washington).  Six 

populations were sampled from Washington to Mexico to evaluate evidence for 

geographic variation in demography, life history, and morphology.  Results provided 

evidence for a latitudinal cline with larger clams occurring in locations characterized by 

colder water temperature.  Age structure and longevity analyses indicated that life 

expectancy was significantly lowered at intertidal sites compared to subtidal sites, 

potentially in response to fishing.  Von Bertalanffy growth model (VBGM) analyses 

revealed significant spatial variation in asymptotic lengths across sampling locations.  

Correlations of climate (temperature and chlorophyll a) and growth parameters indicated 

that clams reached larger sizes at locations that were cooler and more productive.  

Morphological analyses revealed significant spatial differences that did not follow a 

latitudinal pattern, but may be better explained by site-specific habitat differences.  

Results will aid managers in developing regulations, tuned to the demographic variability 

present along the eastern Pacific coast. 
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Introduction 

 Populations of marine species have been shown to differ in demographic 

life history, and morphological traits across a variety of temporal and spatial 

scales (Caley et al. 1996; Agrawal 2001; Kinlan et al. 2005; Longhurst 2007; 

Thorson 2015).  By expressing phenotypic plasticity, biological traits of 

populations can be altered to better match the selective pressures experienced.  

Numerous studies on fishes and invertebrates have shown that life history traits 

such as timing of maturation, growth, age structure, and recruitment can vary 

widely across a species’ range in response to environmental gradients, 

interspecific competition, prey availability, predation, and fishing pressure 

(Connell 1961; Hagen and Gilbertson 1972, 1973; Fleming and Gross 1990; 

Tollrian 1995; Armstrong et al. 1998; Begg et al. 1999; Straile and Hälbich 2000; 

Blanckenhorn and Demont 2004; Loher and Armstrong 2005; Hamilton et al. 

2007; Caselle et al. 2011). 

 Previous studies have reported that demographic and life history traits 

respond to gradients in environmental conditions, such as temperature, 

productivity, irradiation, and wave exposure.  Individuals often attain larger sizes 

and older ages at higher latitudes, where waters are cooler and more productive 

(Lindsey 1966; Caselle et al. 2011).  This pattern is called Bergmann’s rule 

(Bergmann 1847), and past studies have provided support for this phenomenon 

in both terrestrial and marine systems (Watt et al. 2010; Daufresne et al. 2013).  

Other studies have highlighted that temperatures, independent of latitude, drive 
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life history variation in fish (Ruttenberg et al. 2005).  For photosynthetic 

organisms, the amount of irradiation experienced with changing latitudes can 

strongly influence growth (Harvey 1942).  Wave exposure may also influence 

longevity and patterns of growth in marine organisms (Dayton 1971; Denny et al. 

1985; Etter 1989).  In addition, other environmental variables, such as habitat 

composition can cause changes in life history and demographic traits over a 

variety of scales (Robertson et al. 2005).  Variability in ecological conditions 

experienced by marine populations has also been shown to result in shifts in life 

history and demographic traits.  For example, increased predation risk may alter 

the timing of sex change (DeMartini et al. 2005) and alter patterns of longevity, 

growth, and body condition in coral reef fishes (Ruttenberg et al. 2005; Walsh et 

al. 2012). 

Species harvested across large geographic scales often exhibit significant 

shifts in life history and demographic traits in response to size-selective 

harvesting pressure (Law 2000; Hutchings 2005; Hamilton et al. 2007).  Past 

studies have shown that fishing can alter size and age structure (Conover and 

Munch 2002), growth rates (Enberg et al. 2012), sex ratios (Jivoff 2003), timing of 

maturation (Jørgensen 1990; Hutchings 2005; Law 2007), and sex-change 

(Hamilton et al. 2007; Fenberg and Roy 2012).  Shifts in these key demographic 

traits may lead to changes in reproductive output, which could negatively impact 

fitness and resource sustainability in the future.  Understanding the scales of 

variability among population traits is therefore an important aspect of fisheries 
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that needs to be incorporated more robustly in the management of harvested 

species (Gunderson et al. 2008). 

 Prior studies have also shown that organismal body form or morphology 

can differ greatly among populations (Galdecutt et al. 1998; Klingenberg et al. 

2003; Trussell 2000; Costa et al. 2008; Almeland 2015).  Potential ecological and 

environmental drivers of spatial differences in organismal body shape include but 

are not limited to predator avoidance (Hagen and Gilbertson 1973; Bourdeau 

2011), competition for resources (Relyea and Auld 2005), environmental stress 

such as desiccation, or thermal exposure (Miller and Denny 2011; Gleason and 

Burton 2013), and variability in habitat structure and composition (Chan 2001; 

Pulcini et al. 2008).  Parasites have also been reported to induce morphological 

changes in their hosts (Hoffmann 1956; Miura et al. 2006).   

 The development of geometric morphometric techniques (Bookstein 1978, 

1991, 1996, 1998; Bookstein et al. 1985; Adams et al. 2013) led to rapid 

advances in quantifying organismal form (Reyment et al. 1984; Rohlf and Marcus 

1993; Kendall et al. 1999).  The development of analytical techniques (i.e., 

Generalized Procrustes Superimposition, Rohlf and Marcus 1990) to isolate the 

effects of shape, independent from potential confounding factors such as size, 

orientation, and translocation, revolutionized the field.  Computationally intensive 

statistical methods (Dryden and Mardia 1998; Lele and Richtsmeier 2001; 

Zelditch et al. 2012) accompanied these techniques to address ecomorphological 

questions in many different systems (Pimentel 1979; Small 1996).   
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 Geoducks are an ideal study species to investigate geographic variation in 

life history and morphology.  The Pacific geoduck, Panopea generosa Gould 

1850 (formerly Panopea abrupta Conrad 1849 Vadopalas et al. 2010), is found in 

intertidal to subtidal soft substrates from Alaska to Baja California (Anderson 

1971; Bernard 1983; Goodwin and Pease 1987; Coan et al. 2000; Leyva-

Valencia et al. 2012; González-Pelàez et al. 2013).  This clam is one of the 

largest burrowing bivalves in the world with a siphon length of up to 1 m, allowing 

it to burrow deep into the sediment.  P. generosa can reach ages of over 150 

years, which make them suitable for longevity and life history studies (Bureau et 

al. 2002; Black et al. 2008; Black 2009).  Recent studies have used a geoduck’s 

plastic shell morphology to distinguish within species variation in P. globosa and 

among species variation between the north Pacific species, P. generosa, and the 

Mexican species, P. globosa (Leyva-Valencia et al. 2012).  Studies on 

morphology (shell shape) of other bivalves have reported evidence for shell 

plasticity in response to environmental variation such as substrate type, water 

quality, and ambient temperature (Ferson et al. 1985; Innes and Bates 1999; 

Palmer et al. 2004; Costa et al. 2008).  

 Geoducks are a highly prized delicacy in international markets and 

support commercial and recreational fisheries along the Pacific coast of North 

America.  Increasing demand mainly from Asian markets has been sustained by 

augmenting the wild fishery with aquaculture of P. generosa (Welch 2012).  

According to the Washington Department of Fish and Wildlife (WDFW) the wild 
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geoduck fishery generates about $22 million in revenue for the state every year 

(WDFW 2013).  In 2002, Mexico launched its geoduck fishery, targeting both P. 

generosa and P. globosa, and it is surpassing Washington State revenues with 

wild fishery harvest (Rocha-Olivares et al. 2010; Aragón-Noriega et al. 2012).  

While there is no commercial take of P. generosa in California, a recreational 

fishery exists despite the paucity of data relevant to management.  Surveys 

conducted by the California Department of Fish and Wildlife (CDFW) indicate that 

geoduck populations are abundant at certain sites along the California coast 

(unpublished data).   

To better understand P. generosa population demography and dynamics 

in California, and more broadly across its range, studies are necessary to assess 

the scales of natural population variability and the potential environmental 

correlates of that variation.  Population genetic analyses using mitochondrial 

DNA and microsatellite markers indicate that the population of P. generosa 

appears to be generally panmictic throughout its range, with chaotic genetic 

patchiness (Vadopalas et al. 2004; Suarez-Moo 2012; Vadopalas et al. 2012).  

However, Miller et al. (2006) studied P. generosa populations in British Columbia, 

and found significant geographic structure following an isolation-by-distance 

pattern using eight microsatellite loci.  Given the lack of high resolution on 

population genetic structure on a large spatial scale, I was interested in 

evaluating whether life history, demographic, and morphometric traits exhibited 

any geographic structure in this species.  Phenotypic plasticity is a potential 
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mechanism that could explain how life history and morphological traits can 

change spatially, in response to local environmental and ecological conditions, 

even in the face of high gene flow (Koehn et al. 1976; Sanford and Kelly 2011).  

 The goal of this study was to examine spatial differences in life history 

traits of P. generosa from Washington, California, and Mexico.  I collected and 

analyzed data on life history and morphological parameters to aid in the 

biological assessment efforts over a large portion of the geographic range of P. 

generosa.  My objective was to investigate how specific life history traits, 

including mean weight, mean valve length, age, longevity, and body condition 

differed among populations across the species’ range.  I related long-term data 

on sea surface temperatures (SST) and Chlorophyll a (Chl a) at each sampling 

location with lifetime growth parameters to identify whether growth varied as a 

function of either environmental factors or latitude.  In addition, I used geometric 

morphometric tools to identify geographic differences in morphology or shell 

shape.  Shape differences might arise due to age (i.e., as a clam gets older, its 

shell shape could change) or the environmental and habitat conditions 

experienced at a particular site over time (e.g., the Atlantic Herring Clupea 

harengus, Libungan et al. 2015; the mussels Mytilus edulis and M. trossulus, 

Innes and Bates 1999).  Overall, I hypothesized that site-specific life history traits 

and morphological differences of P. generosa would be driven by phenotypic 

plasticity in response to environmental gradients and exposure to harvesting. 
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Methods 

Natural History of Panopea generosa 

 The Pacific geoduck, Panopea generosa, is a member of the bivalve 

family Hiatellidae, known to inhabit soft substrates such as sand, mud, gravel, 

and mixed loose substrates (Ricketts et al. 1968; Goodwin and Pease 1991).   

P. generosa ranges from southeast Alaska to northern Baja California, Mexico 

(Anderson 1971; Bernard 1983; Goodwin and Pease 1987; Coan et al. 2000; 

Leyva-Valencia et al. 2012; González-Pelàez et al. 2013), where appropriate 

habitat occurs in exposed coastal mainland and island areas, to protected bays, 

estuaries, and inland seas.  These long-lived clams (the oldest aged clam, to 

date, was 168 years old; Bureau et al. 2002) are broadcast spawners that 

release their gametes into the water column.  Recent studies show that 

environmental sex determination plays a substantial role in sex ratios, with clams 

maturing as early as two years of age (Campbell and Ming 2003; Vadopalas et 

al. 2015).  Fertilization occurs in the late spring and summer months (Sloan and 

Robinson 1984; Campbell and Ming 2003).  The subsequent planktonic stage 

develops in the water column for up to 47 days at 14ºC (Goodwin et al. 1979) 

prior to settling onto a suitable substrate.  Suitable depths range from the low 

intertidal zones to 110 m (Jamison et al. 1984).  Geoducks burrow into the 

sediment up to a vertical depth of 1 m, remaining there for the rest of their lives, 

with very little movement thereafter.  They filter water through their in- and ex-

current siphons, with an estimated filtration rate of 7-20 L per hour per individual 
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(Straus et al. 2008). 

Coan et al. (2000) described the valves of P. generosa shells as having a 

continuous pallial line with a deep pallial sinus, inner margins that are smooth, 

one singular cardinal tooth, an external ligament, and a porcelaneous interior.  

The two adductor muscle attachment sites are similar in shape.  Each shell half 

is comprised of a hinge plate and consists of three layers.  These layers, 

produced by accretionary growth, can be used to estimate P. generosa’s age, 

growth rates, age-frequency distributions, and construct lifetime growth curves 

(Shaul and Goodwin 1982; Breen and Shields 1983; Goodwin and Shaul 1984; 

Sloan and Robinson 1984; Campbell and Ming 2003; Gribben 2005; Black et al. 

2008; Calderon-Aguilera et al. 2010a; Bautista-Romero et al. 2015; Hidalgo-De-

La-Toba et al. 2015).  Reported average valve lengths of P. generosa range from 

114 mm to 139 mm (Goodwin and Pease 1991; Rocha-Olivares et al. 2010; 

Hidalgo-De-La-Toba et al. 2015), with the largest lengths observed in British 

Columbia (Bureau et al. 2002).  Average weights of P. generosa range from 512 

g to 1,510 g, with the heaviest clams found in British Columbia (Goodwin and 

Pease 1987; Bureau et al. 2002; Rocha-Olivares et al. 2010; Hidalgo-De-La-

Toba et al. 2015). 

 

Study Sites and Collection 

 Geoducks for this study were collected between 2011-2014 at each of four 

sites in California (two subtidal and two intertidal sites; CDFW Permit # 9042; 
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Table 1; Fig.1).  Subtidal California clams (Catalina Island in 2011, and Santa 

Cruz Island in 2013) were collected haphazardly using SCUBA and a water 

pressure hose that liquefied the sediment surrounding a clam.  Intertidal clams 

(Bodega Bay in 2013 and 2014, and Morro Bay in 2014) were collected using 

three-foot long PVC pipes to mark burrows, and shovels to dig up clams.  

Geoduck samples from Washington and Mexico were obtained from colleagues.  

 

 

 

 

Table 1: Collection site information for all study sites. Table 1. Collection site information for all study sites. 

Site Latitude Longitude Depth (m) n 

Dungeness West, WA 48°08.227’N 123°15.195’W 11-21 36 

Bodega Bay, CA 38°19.262'N 123°03.222'W intertidal 30 

Morro Bay, CA 35°20.606’N 120°50.665’W intertidal 50 

Santa Cruz Island, CA 34°03.236'N 119°49.054'W 9-12 37 

Catalina Island, CA 33°25.503’N 118°30.427’W 18-24 32 

San Quintin, Mexico 30°23’N 115°57’W 8-15 30 
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 Geoducks were kept in filtered seawater aquaria at Moss Landing Marine 

Laboratories, Moss Landing, California, until processing.  To record basic 

morphometric variables of the clams, whole wet weight (g) was recorded using a 

precision electronic balance and valve length (mm) was measured using calipers.  

Figure 1.  Map of 6 collection sites included in this study.  
Sample sizes are in parentheses. 
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Length and weight data were used to examine geographic variation in length-

weight relationships and condition indices.  Two 0.5 cm3 pieces of tissue from the 

siphon were dissected, one piece was preserved in 95% EtOH, the other was 

frozen at 70ºC.  Tissues were preserved for future genetic studies. 

 The Washington Department of Fish and Wildlife (Bethany Stevick, 

WDFW) provided aged samples (collected in 2012) and corresponding shell 

images for age-frequency class distribution comparisons and morphological 

analyses from Dungeness West, WA.  Ignacio Leyva-Valencia (Centro de 

Investigaciones Biológicas del Noroeste, Mexico) provided shell images from 

San Quintin, Mexico (collected in 2010).  Images of shells from Mexico were 

used for shell shape and valve length comparisons to all other sites, but age data 

could not be inferred. 

 

Age Estimation 

 Individual clams from each population were aged in order to obtain 

information on age structure, growth rates, and longevity.  All shells were cut into 

squares using a small air-compression handsaw, while keeping the umbo intact. 

Ages were estimated at the four collection sites in California according to 

methods validated by Vadopalas et al. (2011).  The steps involved in aging 

California samples included cutting the hinge plate (where the right and left shell 

valves meet) of the geoduck shell at the umbo where layers of shell are added 

with each subsequent year starting at the end of the first year.  Sectioning of the 
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umbo allowed for quantification of these yearly layers, which comprise the age 

rings or annuli (similar to tree rings, Fig. 2).  To section the clamshells, the hinge 

plate of a clam was placed on a diamond blade attached to an “Isomet” (Buehler, 

Model # 111280) slow-speed saw with a modified chuck to keep the hinge plate 

from moving.  Four thin sections were cut, two at the umbo, one midway, and 

another closest to the hinge plate edge for replication keeping thin sections at 

constant distances roughly 0.6 µm apart.  Then, the four sections per clam were 

glued onto a microscope slide using 2-3 drops of “Cytoseal 60” (Thermo 

Scientific, Catalog # 23-244257) slide preparation glue.  Slides were left to dry for 

24 hours prior to polishing them using 300 grit and 600 grit sand paper with a 

rotating polishing machine (Isomet 3) at 200-300 RPMs.  

 To enhance ring clarity prior to aging, polished slides were etched in a 1% 

HCL bath for 2 minutes.  Acetate peels were taken using the methods developed 

by Shaul and Goodwin (1982).  Peels were centered between two glass slides 

and the edges were taped to secure the peels.  Prepared peels were then placed 

under a Leica DM4000 compound microscope (4x and 10x magnifications), and 

samples were aged using annual growth increment counts and the program 

ImagePro Plus v.7.0.  Cross-dating, based on tree-ring analysis, was employed 

to increase accuracy (Black et al. 2008).  The assumption of the cross-dating 

method is that environmental variability is the same for each geographic region 

allowing for an organism to feature synchronized growth patterns, which are 

manifested in the growth ring increments.  
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Lifetime Growth Curve Estimation 

 In order to construct lifetime growth curves for each population, length and 

age data were fit to the von Bertalanffy growth model (VBGM) equation, as 

modified from the Fisheries R vignette (Ogle 2015).  VBGM equations were 

adjusted according to the description by Pérez-Valencia and Aragón-Noriega 

(2013) on P. globosa to visualize length-at-age clam data using:  

L t = L!"# 1− e!!(!!!! )  

Where L(t) represents the predicted valve length of the clam shell at age (t), Linf 

Figure 2. Aging methods. A. Sectioning of umbo. B. Sections mounted on 
slide. C. Polishing. D. Aging of acetate peel (each numbered increment 
represents one year of growth from youngest to oldest). This slide shows a 
13-year-old geoduck section. 
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represents the predicted maximum asymptotic length parameter, K is the 

coefficient of growth or the curvature parameter (how fast Linf is reached), t 

represents the clam’s age, and t0 is the hypothetical age, at which a clam had 

zero length (initial condition parameter).  Following recommendations in 

Robertson et al. (2005) t0 was fixed to zero for each population, due to the 

extreme difficultly in finding young individuals. 

 To test whether growth curves were significantly different from each other 

among sampling locations, two approaches were used.  First, 95% Confidence 

Intervals were calculated around the model fit for the growth curve for each 

sampling location.  Secondly, 95% confidence intervals were compared for the 

two most important growth equation parameters, Linf and K, in bivariate space.  In 

both cases, lack of overlap of growth curves or curve parameters signified 

statistical significance at the α = 0.05 level. 

  

Life History Data Analysis 

Length-weight relationships were fit using a non-linear power function for 

each population and length-weight parameters were compared among 

populations using an analysis of variance (ANOVA), followed by a Tukey post-

hoc analysis to identify how sites differed from one another.  As a proxy for 

condition, the Fulton’s K condition factor was calculated (Ricker 1975) using the 

equation W/L3 x 1000, and compared among the populations using an analysis of 

variance (ANOVA).  
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Size-frequency and age-frequency distributions were compared among 

geographic locations using an ANOVA to test whether mean size or age differed 

geographically.  Longevity was calculated as the top quartile of the age 

distribution for each location (i.e., Tmax; sensu Choat and Robertson 2002), which 

corrects for bias in estimating the maximum age for small and unequal sample 

sizes. 

In order to examine whether life history traits correlated with long-term 

mean environmental conditions present at each sampling location, sea surface 

temperature (SST) and chlorophyll a (Chl a) data for a 10-year period were 

obtained.  SST and Chl a data were acquired from satellite remote sensing data 

(AVHRR Pathfinder and MODIS) maintained by the Giovanni online data system 

through NASA GES DISC (2015).  Briefly, SST and Chl a were averaged over a 

4 km box offshore for each sampling region for the 10-year period from 2002 to 

2012.  Chl a and temperature were tested independently to examine their relative 

influence on life history traits (e.g., longevity, Linf, and K) despite obvious 

autocorrelation of these two variables.   

 

Geometric Morphometrics 

 Prior to estimating ages of California samples, shell halves were cleaned, 

dried, and numbered.  The internal scars of each shell were traced with a lead 

pencil to enhance internal scars in photographs.  To examine geographic 

variability in shell morphology, high-resolution images were taken with a Nikon 
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D3100 macro lens placed on a tripod for stability highlighting three anatomical 

features in geoduck shells: the umbo, antero-ventral adductor muscle scar, and 

postero-ventral pallial sinus scar.  These features have been shown to best 

characterize morphological differences in geoduck clams (Leyva-Valencia et al. 

2012).  Clamshell pictures were imported into Image J (Schneider et al. 2012) 

and 15 landmarks were placed on each shell, capturing the anatomical features 

discussed above (Fig. 3).  Each landmark's position was noted as x-and y- 

coordinates per landmark for a total of 30 coordinates and 15 landmarks per 

shell.  Morphometric landmark data from Image J were then imported into the 

shape analysis program Morpho J v.1.06d (Klingenberg 2011).  Morpho J was 

used to compare the landmark positions on each shell in geometric space via 

Generalized Procrustes Superimposition (Kendall 1977; Rohlf and Slice 1990; 

Goodall 1991). 
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 Three steps were involved to superimpose clamshells in shape space 

(Bookstein 1991): First, location differences (translocation) of the clam valve in 

each picture were removed by generating a reference coordinate system (0,0) in 

Cartesian space.  Second, shell valves were rescaled geometrically upon their 

centroid size (the square root of the sum of squares distances of each landmark), 

and third, the orientation of clamshells was synchronized.  Composite shell 

shape differences were then compared among sampling locations using a 

multivariate canonical variates analysis (CVA), which seeks to maximize within 

and among site variation in shape.   

Figure 3. Landmark placement in clam shells in Image J. 15 landmarks (red) 
were placed in and around shell at the same location for each shell. 
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To test whether shell morphology differed significantly among sampling 

locations, 90% confidence ellipses were calculated around each site and 

significance was determined by the lack of overlap.  Confidence intervals were 

calculated using resampling techniques by bootstrapping the site-specific 

distribution of shell shape variation 10,000 times with replacement.  Lastly, shell 

morphology changes at each site as a function of clam age, after controlling for 

differences in shape due to size, were analyzed.  Shape Regression scores were 

assigned to each shell using the Procrustes distances (Euclidean distance 

between each x-and y-coordinate for all 15 landmarks per shell).  These shape 

scores were then regressed against the centroid size of each shell (i.e., a 

dimensionless proxy of organism size) to eliminate allometric effects on shape.  

Residuals from this regression were saved and correlated with age at each site 

to test whether age (irrespective of any inherent size parameter) was associated 

positively or negatively with shell shape metrics. 

 

Results 

Geographic Variation in Size Structure and Condition 

 Geoducks exhibited significant spatial differences in whole weight 

(ANOVA, F4, 179 = 61.98, p<.0001; Table 2; Fig. 4A) and valve length (ANOVA, 

F5,208 = 46.52, p <.0001; Table 2; Fig. 4B) among sampling locations.  There were 

no whole weight data available for San Quintin, MX.  The Tukey HSD post-hoc 

results showed that geoducks differed in whole weight and valve length (Fig.4) 
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with clams from Dungeness West being heavier than clams at any other site, 

followed by Santa Cruz Island, both intertidal sites, and lastly Catalina Island 

(Fig. 4A).  Dungeness West, Santa Cruz Island, and San Quintin were not 

significantly different from each other based on their average valve lengths, but 

were significantly larger than any other sites followed by Bodega Bay.  Morro Bay 

and Catalina Island showed no significant difference in average valve length, but 

were significantly smaller in comparison to all other sites (Fig. 4B).   
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Figure 4. Geoduck whole weight (top graph) and valve length (bottom graph) 
comparisons by site. Boxes represent quartiles. The dots next to the boxes are the 
raw data points for each site. The horizontal dotted line in each box indicates site 
mean value. The solid horizontal line indicates the median of the site data. No 
whole weight data were available for San Quintin, Mexico. The Tukey HSD post-hoc 
test results are shown as lower case letters above boxes. All means are significantly 
different if they are not sharing any letters. Each site is denoted with an “(s)” for 
subtidal and an “(i)” for intertidal. 
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 Valve length was a significant predictor of whole weight across all 

sampling locations (Fig. 5) and length-weight relationships were well described 

by a non-linear power function (Y=a*Xb; Table 3).  Interestingly, the power-

scaling parameter b increased with increasing latitude up to Bodega Bay and 

decreased slightly at Dungeness West (Table 3). 
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Figure 5. Length-weight relationships for geoducks from 5 study locations.  
A) Dungeness West, WA; B) Bodega Bay, CA; C) Morro Bay, CA; D) Santa Cruz 
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 Clams showed significant spatial differentiation in the Fulton’s K body 

condition factor (ANOVA, F4,179 = 14.69, p<.0001; Fig. 6).  Tukey HSD post-hoc 
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test results revealed that clams from Dungeness West and Morro Bay were in 

significantly better condition than clams from other locations.  Bodega Bay, Santa 

Cruz Island, and Catalina Island showed no significant differences in body 

condition according to post-hoc results.  These results indicate that clams were 

heavier for a given length at those locations where the condition factor was 

higher. 

 

 

Figure 6. Fulton’s body condition factor (K) averages by site. Error bars 
represent ± 95% CI. The Tukey HSD post-hoc test results are shown as lower 
case letters above bars. Means not sharing the same letters are significantly 
different. Each site is denoted with an “(s)” for subtidal and an “(i)” for 
intertidal. 
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Age, Growth, and Environmental Correlates 

 Age-frequency distributions of geoducks differed significantly (ANOVA, 

F4,172 = 32.96, p<.0001) among sampling locations  (Fig. 7; Table 2).  Clams from 

Dungeness West exhibited the largest age span of all five sites (5-104 years), 

whereas Bodega Bay (4-20 years) and Morro Bay (7-46 years) showed the 

smallest range of ages of all sites, with frequent occurrences of individuals 

representing younger age classes.  Santa Cruz Island (8-76 years) and Catalina 

Island (9-65 years) fell between Dungeness West and the two intertidal bay sites 

with a larger range of age classes represented, but less representation of the 

older age classes compared to Dungeness West. 
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Figure 7. Age-frequency distributions of geoduck clams for 5 of the 
sampling locations in California and Washington. Note: age classes 
are binned in 10-year increments. Each site is denoted with an “(s)” 
for subtidal and an “(i)” for intertidal. 
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 Life expectancy, or longevity (mean of top quartile of clam ages) differed 

significantly among sampling locations (ANOVA, F4,40 =118.58, p<.0001; Fig. 8). 

The trend was revealed via the Tukey HSD post-hoc indicating that life 

expectancy is greatest at Dungeness West (subtidal), followed by both subtidal 

island sites, and lastly the two intertidal bay locations.  

 

 Comparisons of longevity to the average sea surface temperature (SST in 

ºC) and chlorophyll a (Chl a in mg*m-3) levels from 2002 to 2012 revealed no 

Figure 8. Longevity means for 5 sites (mean of top quartile of 
clam ages, ± 95% CI). The Tukey HSD post-hoc test results 
are shown as lower case letters above bars. Means with 
same letters are not significantly different. Each site is 
denoted with an “(s)” for subtidal and an “(i)” for intertidal.  
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significant correlations across the sampling locations (SST: r = 2.0x10-6, p = 

0.9974; Chl a: r = 0.37, p = 0.5438). 

 Geoducks exhibited significant geographic variability in lifetime growth 

curves among the sampling locations (Fig. 9).  Dungeness West, Bodega Bay, 

and Santa Cruz Island had the highest asymptotic length parameter value (Linf; 

Fig. 9A, B, D) after fitting the VBGM to the length-at-age data, whereas Morro 

Bay and Catalina Island had the lowest values of Linf  (Fig. 9B, E).  Bodega Bay 

exhibited the highest growth rate coefficient (K) at 0.25, followed by Catalina 

Island (K=0.24), Santa Cruz Island (K=0.22), Dungeness West (K=0.20), and 

Morro Bay (K=0.15).  Significant differences in growth curves can be visualized 

by examining the bivariate plot of 95% confidence intervals around the growth 

parameters of Linf and K (Fig. 10).  Clams from Dungeness West, Bodega Bay 

and Santa Cruz Island have similar growth patterns, while lifetime growth curves 

are significantly different at Morro Bay and Catalina Island, primarily driven by a 

lower Linf. 
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Figure 9. Geographic variation in lifetime growth curves of geoducks from 5 
study locations (A-E). Each site is denoted with an “(s)” for subtidal and an “(i)” 
for intertidal. Von Bertalanffy growth model (VBGM) were fit to length-at-age 
data for each site (solid line) and ± 95% CI (dashed lines). VBGM curves for 
each site superimposed (F). 
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 VBGM parameters for the five sites were compared to the 10-year (2002-

2012) mean of SST (ºC) and Chl a (mg*m-3) levels (Fig. 11).  Neither Linf, nor K 

showed any significant associations with either environmental variable at any of 

the five sites.  However, there were negative trends between Linf and SST  

(r2 = 0.54, p = 0.16; Fig. 11A) and positive trends between Linf with Chl a  

(r2 = 0.41, p = 0.25; Fig. 11B), indicating that clams reached larger sizes at 

locations that were cooler and more productive.  Despite low sample sizes (only 

5 populations) and thus low statistical power, 54% of the variation in asymptotic 

Figure 10. Von Bertalanffy growth parameters for each study location. Error 
bars represent ± 95% CI. Each site is denoted with an “(s)” for subtidal and 
an “(i)” for intertidal.  
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size among locations could be explained by average temperature and 41% of the 

variation could be explained by Chl a or productivity.  The growth or curvature 

parameter K exhibited the opposite pattern to Linf, but with much weaker trends 

(Fig. 11). 

 

Spatial Variability in Geoduck Morphology 

 Geoducks exhibited highly significant spatial variability in shell morphology 

among the six sampling locations (Fig. 12).  The CVA results indicated that 73% 

Figure 11. Relationships between geoduck life history variables and 
regional environmental conditions (A-D). Von Bertalanffy growth 
parameters for 5 sites compared to ten-year averages (2002-2012) of sea 
surface temperatures (SST, ºC) and chlorophyll a (Chl a, mg*m-3) levels. 
WA= Dungeness West, WA, BOD= Bodega Bay, CA, MOR= Morro Bay, 
CA, SCI= Santa Cruz Island, CA, CAT= Catalina Island, CA. 
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of the variation in shell morphology was explained by the first two canonical 

variate (CV) axes (Table 4; Fig. 12).  CV1 explained 52.3% of the variation and 

was characterized by changes in shell shape along the dorsoventral axis (from 

the umbo to the valve opening).  For example, Catalina Island shells were more 

dorsoventrally compressed (positive CV1 value), whereas Dungeness West 

clams were more dorsoventrally expanded (negative CV1 value) in comparison 

to shells from all other locations.  CV2 explained 20.9% of the variation in shell 

morphology as a function of geographic location and was characterized by 

changes in shell shape along the anteroposterior axis (from the area where a 

shell digs into the sand to the area where the siphon is located).  While Bodega 

Bay, Morro Bay, Santa Cruz Island, and San Quintin shells were similar in shape 

along the dorsoventral axis (CV1), shells from these locations showed much 

more shape variation along the anteroposterior axis (CV2).  The two intertidal 

sites, Bodega Bay and Morro Bay, exhibited a widening of the anterior end of the 

shells, whereas subtidal sites like Santa Cruz Island and San Quintin were 

compressed at the anterior end of the shells. 

 Mahalanobis distances, the test statistic used to determine significant 

differences in multivariate measures of shape among sampling locations, 

indicated highly significant (p <0.0001) differences among all groups (Table 5).   

Bodega Bay and Morro Bay exhibited the least amount of difference in distance 

to the grand average Procrustes distances, indicating that shells from these 
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locations were representative of the average geoduck shell shape among 

sampling locations.   

 

Figure 12. Each point represents the shape of a clamshell. Sites are denoted by 
colors. Intertidal and subtidal sites are marked by “(i)” and “(s)” respectively. The zero 
point of each axis denotes the grand average of all sites. Canonical Variate 1 (CV1) 
axis explains 52.3% of the variation in shell shape and represents the degree of 
dorso-ventral compression of a shell. Canonical Variate 2 (CV2) explains 20.9% of 
the variation in shell shape and represents the degree of antero-posterior variation in 
a shell. The ellipses represent the 90% confidence intervals for each site. 
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 Significant differences in shell shape among locations were reflected in 

the site-by-site Procrustes distances, measuring the absolute amount of shape 

difference (Table 6).  Bodega Bay and Morro Bay, the two intertidal sites, were 

more similar to each other in shell shape than any of the other subtidal locations 

with 90% of the shape values on the positive CV2 axis.  This result indicates that 

the intertidal clams at these two sites show a widening in the anterior region 

close the ventral region (or valve opening) as compared to the subtidal sites.  

The subtidal locations were significantly different from the intertidal sites based 

 
Table 4. Shape variation among groups, scaled by the 
inverse of the within-group variation. 
Canonical Variate Eigenvalues % Variance Cumulative % 

1 3.32759414 52.298 52.298 

2 1.33109200 20.920 73.218 

3 1.01926497 16.019 89.238 

4 0.40212419 6.320 95.558 

5 0.28264376 4.442 100.000 

 

Table 5. Mahalanobis distances measured in Procrustes distance among groups  
(p-values <.0001 from 10,000 rounds permutation tests). Each site is denoted an 
“(s)” for subtidal and an “(i)” for intertidal. 

 
Site 

Dungeness 
West, WA 

Bodega 
Bay, CA 

Morro 
Bay, CA 

Santa Cruz 
Isl., CA 

Catalina 
Isl., CA 

Dungeness West, WA, (s)      
Bodega Bay, CA, (i) 4.5807     
Morro Bay, CA, (i) 4.7294 2.0451    
Santa Cruz Isl., CA, (s) 3.6557 3.1335 3.1539   
Catalina Isl., CA, (s) 5.9679 3.6708 3.6750 3.6486  
San Quintin, MX, (s) 3.8456 3.9764 3.6663 2.6463 4.8505 
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on shell shape, with differences in shape primarily occurring on the dorsoventral 

axis of the shell (CV1 axis). 

 

 The log centroid size of clams (i.e., a proxy for clamshell size) did not 

significantly predict shape at any site (Fig. 13) except for Catalina Island (r2=0.23, 

p=0.02; Fig. 13E).  Shell shape systematically changed with age only at Catalina 

Island where there was a trend for shells to be more dorsoventrally compressed 

as well as slightly more narrow at the anterior end as clams got older (r2=0.11, 

p=0.002; Fig. 14E).  

 

 

 

Table 6. Procrustes distances among groups (p-value <.0001 after 10,000 round 
permutation test for all sites, with exception of Morro Bay and Bodega Bay,  
p-value = 0.0197). Each site is denoted an “(s)” for subtidal and an “(i)” for intertidal. 

 
Site 

Dungeness 
West, WA 

Bodega 
Bay, CA 

Morro 
Bay, CA 

Santa 
Cruz Isl., 
CA 

Catalina 
Island, CA 

Dungeness West, WA, (s)      
Bodega Bay, CA, (i) 0.0414     
Morro Bay, CA, (i) 0.0702 0.0338    
Santa Cruz Isl., CA, (s) 0.0721 0.0375 0.0538   
Catalina Isl., CA, (s) 0.0849 0.0414 0.0564 0.0458  
San Quintin, MX, (s) 0.0495 0.0548 0.0572 0.0496 0.0680 
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Figure 13. (A-E) Log Centroid Size versus Shape Score. All sites with the exception 
of Catalina Island (p=0.02, r =0.48) show that Centroid Size is not a predictor of 
shape. Each site is denoted with an “(s)” for subtidal and an “(i)” for intertidal. 
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Figure 14. (A-E) Residual shape scores from Fig. 13 (shape versus centroid size) 
were used to evaluate age as a predictor of shape irrespective of any possible 
allometric (size) effects inherent in shape. Each site is denoted with an “(s)” for 
subtidal and an “(i)” for intertidal. 

� �� �� �� �� ���
��	��

��	��

�	��

�	��

�	��

�	��

�	��

�	��

�	��

� �� �� �� �� ���
��	��

��	��

�	��

�	��

�	��

�	��

�	��

�	��

�	��

� �� �� �� �� ���
��	��

��	��

�	��

�	��

�	��

�	��

�	��

�	��

�	��

� �� �� �� �� ���
��	��

��	��

�	��

�	��

�	��

�	��

�	��

�	��

�	��


���
���������������
� �� �� �� �� ���

��	��

��	��

�	��

�	��

�	��

�	��

�	��

�	��

�	��


	������������������
����� �	�������������� ��!���
�����

"	�"#!����"�����
����� 
	����� ������ ��!���
�����

�	�$#��#�"�����
�����

%
��

�!
��

 ��
&�

'�
��

(#
��

�

����)��	��
��'�)��	*+

���)��	��
��'�)��	�+

�����)��	��
���'�)��	,,

��)��	��
��'�)��	-�

���)��	,,
����'�)��	���



 

 
 
 

39 

Discussion 

 This study is the first to investigate geoduck population demography and 

dynamics in California.  Comparisons of life history and morphological traits 

revealed significant differences in length-weight relationships, body condition, 

longevity, lifetime growth parameters, and shell shape across the sites sampled.  

Size structure followed a latitudinal gradient with clams getting larger in northern 

latitudes, which coincided with larger asymptotic lengths reached.  Growth was 

positively correlated with chlorophyll a (Chl a) and negatively correlated with sea 

surface temperature (SST), indicating that productivity could be responsible for 

these observations.  Additionally, subtidal clams, irrespective of latitude, were 

characterized by an age distribution reflecting older individuals compared to the 

age structure of intertidal clams, potentially reflecting a depth refuge from 

harvesting.  Valve shape analyses did not conform to any latitudinal pattern.  

However, intertidal sites were similar in shape featuring an anteroposterior 

expansion of valves, whereas subtidal sites were mostly dorsoventrally 

compressed.  

  

Geographic Variation in Size Structure and Condition 

 Geoducks followed a latitudinal gradient in length, weight, and condition, 

with heavier and larger clams occurring in the northern latitudes.  One possible 

explanation for this positive latitude versus size relationship is Bergmann’s rule 

(Bergmann 1847), which relates this type of size increase in endotherms to a 
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heat conservation mechanism: the larger the animal, the better it can conserve 

heat in the colder northern latitudes.  There is evidence that Bergmann’s rule 

applies to not only endotherms but ectotherms as well.  Ray (1960) found that 13 

out of 17 poikilotherms followed Bergmann’s rule.  However, there is controversy 

surrounding the applicability of Bergmann’s rule to ectotherms.  For example, 

studies have shown that the pattern of increasing size as a function of latitude is 

a phenotypic response to countergradient variation in environmental conditions, 

such as temperature and length of the growing season (e.g., the fruit fly 

Drosophila melanogaster, Levins 1968; the marine gastropod Bembicium 

vittatum, Parsons 1997).  Similar to P. generosa, Caselle et al. (2011) reported 

that California sheephead attained larger sizes at higher latitudes that were 

characterized by colder temperatures, and also fewer competitors.  Heilmayer et 

al. (2004) showed a significant correlation between the growth efficiency in 

scallops and temperature, with elevated temperatures constraining growth.  

Frank (1975) found a strong latitudinal pattern of the black turban snail, Tegula 

funebralis, with snails in the northern latitudes living longer and growing more 

slowly, but ultimately attaining larger sizes than in the southern latitudes.  

Latitudinal differentiation favoring faster development rate and larger adult size 

was also found in a copepod collected over a broad latitudinal scale: Lonsdale 

and Levinton (1985) found significant latitudinal differentiation in the estuarine 

copepod Scottolana canadensis that persisted even when reared in common 

conditions.  In contrast, Ruttenberg et al. (2005) showed that Stegastes beebii 
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reached larger sizes and older ages in cooler locations at the Galapagos Islands, 

irrespective of latitude.  Conover and Schultz (1995) used reciprocal transplant 

experiments with the Atlantic silverside (Menidia menidia) to test whether 

countergradient variation in growth and size (faster growth and larger individuals 

in cooler northern regions) was due to phenotypic plasticity in response to 

variable environmental conditions.  Their results indicated a strong genetic basis 

for the observed differences in body form, growth, and condition across a broad 

latitudinal range off the east coast of North America.  Transplanting of juvenile 

geoducks is a common practice in aquaculture facilities in the Pacific Northwest.  

Thus, reciprocal transplant experiments are a feasible option to address the 

potential genetic basis of the observed latitudinal size differences in geoducks in 

the future. 

 Every latitude features differences in SST and Chl a.  Geoducks are filter 

feeders that inhabit habitats ranging from highly variable temperatures in the 

intertidal to less variable subtidal temperature regimes.  Both SST and Chl a may 

influence geographic patterns in body condition and weight-length relationships 

in these clams.  Chl a, a proxy for oceanographic productivity, shows a strong 

negative correlation with temperature.  Due to this autocorrelation, it is difficult to 

separate whether temperature, productivity, or both may be driving the observed 

size variation in P. generosa.  However, previous studies have shown that size is 

positively correlated with Chl a in mussels (Page and Hubbard 1987) and 



 

 
 
 

42 

scallops (MacDonald and Thompson 1985), which lends support for this 

hypothesis in geoducks.   

 

Age, Growth, and Environmental Correlates 

 There were striking differences in age frequency distributions among 

subtidal and intertidal locations.  Geoduck populations in the intertidal sites 

exhibited a dramatic truncation in older age classes relative to the subtidal sites.  

Thus clams were younger at the intertidal sites and older at the subtidal sites.  

This pattern suggests a potential depth refuge for the clams at the subtidal sites, 

where they experience higher survivorship compared to the shallower intertidal 

areas.  Possible explanations for differential survivorship include decreased 

abiotic stress, lower predation, disease, parasitism, and reduced fishing pressure 

in subtidal compared to intertidal locations.  Predation is likely to be greater on 

the subtidal clams than the intertidal clams and thus predation pressure is 

unlikely to explain the observed age structure variation in P. generosa.  

Predators of juvenile and adult geoducks include the sea stars Pisaster 

brevispinnus and Pycnopodia helianthoides (Mauzey et al. 1968; Sloan and 

Robinson 1983), which are more common in subtidal locations.  Jensen (1995) 

reported that crabs prey on geoducks in Puget Sound, Washington.  Three of the 

crab species Jensen observed are also found at the intertidal sites in this study 

(Bodega Bay and Morro Bay): the red rock crab (Cancer productus), the graceful 

crab (Cancer gracilis), and the Dungeness crab (Cancer magister).  Juvenile 
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crabs of all three species were found at Bodega Bay when sampling for this 

study (personal observation).  Because geoducks typically live below mean lower 

low water, predators such as fishes may also feed on geoducks.  Anderson 

(1971) observed that siphon damage caused by predatory fishes, such as the 

cabezon (Scorpaenichthys marmoratus) and the spiny dogfish (Squalus 

acanthias) could impact a growth.  Both fishes are known to frequent Bodega 

Bay and Morro Bay waters and occur commonly at the subtidal locations 

sampled.  One additional voracious predator, the sea otter (Enhydra lutris), is 

capable of feeding on geoducks, primarily in subtidal locations.  There are 

reports from subtidal sites in southeast Alaska and Monterey Harbor, California 

confirming that otters prey on deep-burrowing clams and that they are able to 

excavate them as deep as 0.5 m in the sediment (Kvitek 1993; Hines and 

Loughlin 1980).  This maximum observed sediment depth is half of a clam’s 

siphon length, which could be providing a burial depth refuge from otters.  Morro 

bay has a resident sea otter population, which could explain the lack of old clams 

in that location if predation occurs during high tides.  However, otters do not 

occur in Bodega Bay, where clams are also much younger than average.   

Recreational fishing may provide an explanation for increased longevity in 

subtidal sites and truncation in older age classes in intertidal sites.  In California, 

clams are primarily harvested recreationally from intertidal locations by digging 

for them at low tide.  There is currently no harvest allowed for subtidal clams in 

California.  Recreational clamming for geoducks is high in Bodega Bay (personal 
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observation) when tides are low enough to dig up clams.  From the seven creel 

surveys conducted by the CDFW (personal communication, Christy Juhasz) 

between 2012- 2013 catch per unit effort (CPUE) was estimated at 0.005 with a 

total of 358 recreational clammers that year.  The current CPUE maximum is set 

at three geoducks per person per day in California.  Morro Bay, the other 

intertidal site in this study, was declared a State Marine Recreational 

Management Area (SMRMA) in 2007, which restricts take of living marine 

resources (CDFW 2015).  Prior to the closure, clamming activities in this area 

were primarily targeting Pismo clams.  The decline of Pismo clams could have 

shifted fishing pressure to geoducks.  However, there is no data available to 

support this.  Geoducks are long-lived, reaching ages over 100 years (Bureau et 

al. 2002).  The Morro Bay SMRMA closure is recent relative to the generation 

time of P generosa, and thus the effects of past fishing pressure will likely be 

visible in the age structure for many decades to follow.   

How body size changes as a function of age in P. generosa may be used 

for stock assessment of this species.  Traditionally, studies have used the von 

Bertalanffy growth model (VBGM) to understand size-at-age distributions in P. 

generosa (Goodwin and Shaul 1984; Hoffmann et al. 2000; Calderon-Aguilera et 

al. 2010a).  González- Peláez et al. (2015) compared seven growth curve models 

and found the Gompertz growth model to be a more solid predictive model of 

size-at-age data in P. globosa compared to other growth models based on the 

Aikaike Information Criterion (AIC) value.  However, differences in AIC values 
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between the Gompertz growth model and the VBGM were not statistically 

significant.  The difference between these models is related to the sigmoidal 

curve inflection points and maximum lengths.  Employing the Gompertz model in 

this study could inflate the maximum valve lengths observed and make future 

comparisons to other studies difficult.  To enable comparisons with other studies, 

the traditional VBGM model was used in this study.  The growth coefficient, K, in 

the VBGM is indicative of how fast a maximum length or Linf is reached.  Growth 

curve coefficients as part of this study ranged from K=0.15 to K=0.25.  This range 

falls within reported ranges for P. generosa populations in British Columbia, 

Washington, and Baja California (Hoffmann et al. 2000; Campbell and Ming 

2003; Calderon-Aguilera 2010) and showed weak correlations with 

environmental correlates.  The largest geographic difference in the VBGM was 

observed in the predicted maximum asymptotic length parameter Linf.  Low 

sample sizes may have precluded the detection of statistically significant 

correlations between Linf and the environmental variables of mean SST and Chl a 

(Fig.11).  However, 54% of the variation in Linf among locations could be 

explained by average temperature differences and 41% of the variation could be 

explained by Chl a.  Asymptotic growth increased with decreasing temperature, 

greater latitude, and elevated Chl a levels.  These oceanographic factors are 

closely connected and can influence the structure of marine food webs 

(Sarmiento et al. 2004).  Chl a serves as a proxy for phytoplankton availability, a 

clam’s primary food source, and similar to this study on P. generosa, Chl a has 
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been shown to positively influence bivalve growth in other systems (Seed and 

Suchanek 1992).  Utting (1988) correlated oyster growth to phytoplankton 

abundance in the wild, while Smaal and van Stralen (1990) came to the same 

conclusion when examining growth and conditions of mussels.  Pernet et al. 

(2007) found that temperature was highly correlated to metabolic processes in 

Mytilus edulis and Crassostrea viriginica.   

 

Spatial Variability in Geoduck Morphology 

 Shell shape was described using 15 internal shell landmarks via geometric 

morphometrics, finding significant geographic variation in morphology.  More 

than half of the spatial variation in shell shape was explained by a dorsoventral 

compression of the clamshells (Fig. 12).  Shell morphology did not change as a 

function of latitude.  Instead, shape variation is likely explained by habitat 

composition or other environmental variables.  Stanley (1970) showed that life 

modes or habits of clams could indeed influence their morphology or shape.  He 

examined 95 western Atlantic bivalve mollusks representing 29 families, and 

demonstrated that morphological features of the shell reflect a bivalve’s habitat 

preference.  For example, a more streamlined or dorsoventrally compressed 

shell shape, similar to the shells of P. generosa from Catalina Island, 

characterizes rapid burrowers.  Additionally, shell thickness can indicate what 

type of substrate or disturbance regime a clam resides in.  Shell thickness and 

strength are positively correlated with disturbance frequency (Stanley 1970).  
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Geoducks collected at the two intertidal sites and Santa Cruz Island featured 

very thick shells; all three habitats are high disturbance environments with more 

exposure to tidal fluctuations than the Catalina Island site.  The latter is in a 

protective harbor often used as shelter for the boating community when storms 

occur.  This protective environment could induce thinner shells in Catalina Island 

shells inherently allowing them to become more rapid burrowers into the 

sediment.  Recent examination of the biomechanics and burrowing rates in 

geoducks by Tapia-Morales et al. (2015) indicated that juvenile clams burrowed 

ten times faster in sand than in mud sediment.  Both Morro and Bodega bay 

featured mud sediment at the clam collection sites, while Catalina and Santa 

Cruz Islands had fine sand.  Shells from Catalina Island were thinner (hence 

more brittle) and smaller for their age compared to all other sites.  Depending on 

the grain size and burrowing abilities, subsequent growth could be affected such 

that the clam’s morphology adjusts to its environment.  Future studies should 

take sediment cores up to the depth that a clamshell resides in their natural 

habitat prior to digging them up.  Sediment core analyses could lead to 

quantitative answers as to what properties of the sediment could be driving 

morphological differences.   

 Shape was consistent at each site, and did not change with clam age, 

except at Catalina Island.  Thus shape is likely determined more by the habitat 

and other local conditions present at a site.  Hinch et al. (1986) conducted 

reciprocal transplant experiments with freshwater clams (Lampsilis radiate) 
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originating from sand and mud substrates, and found that clams had a 

phenotypic response to substrate by changing their shell shape, but a genetic 

response in their growth.  However, shape and size can be closely correlated 

through allometry: as an organism grows into adulthood it can change its shape 

proportions (Klingenberg 1996).  Catalina Island was the only site in this study 

that featured this very pattern: age estimates predicted residual shape scores 

(size corrected).  Shell shape analyses conducted by Caill-Milly et al. (2012) on 

the Manila clam Ruditapes philippinarum showed that there was no evidence for 

genetic intraspecific variation in these clams but rather phenotypic plasticity was 

driven by local environmental conditions.  Similarly, the calm waters in Catalina 

harbor could be responsible for the difference in its relative shape and shell 

thinness that could provide geoducks there with more rapid burrowing rates 

compared to any of the other sites in this study.   

 

Phenotypic Plasticity and the Environment 

 With an average larval duration of 47 days, there is a potential for high 

gene flow and extensive population connectivity across the species range of P. 

generosa, from Alaska to Baja California.  Vadopalas et al. (2004) reported 

genetic patchiness of P. generosa populations using microsatellite markers, but 

their study did not include the entire range of P. generosa.  Miller et al. (2006) 

found a significant isolation-by-distance pattern in British Columbia Panopea 

populations.  Strong evidence for geographic variation in life history and 
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morphometric traits in P. generosa on a larger spatial scale was found in this 

study.  Whether these differences are due to adaptive phenotypic plasticity or 

non-adaptive phenotypic plasticity in response to variable environmental 

conditions is unclear, as loci under selection may not be linked to presumed 

neutral loci such as microsatellites.  The response observed here is presumed 

due to environmental variation via non-adaptive phenotypic plasticity, because of 

the lack of evidence for genetic population differentiation.  Whether or not there is 

connectivity between California clam populations and sites in Mexico and 

Washington requires further analyses, and makes for much needed research in 

this area. 

 

Recommendations for Fishery Management 

 This study was a first step toward understanding California geoduck 

populations in comparison to other Pacific coast locations with abundant clam 

populations that are currently managed and fished.  Considering geoducks’ 

profitability in Washington, Mexico, British Columbia, and Alaska, this study was 

a necessary first of many steps to address the level of management this clam 

may require in California waters.  More information is needed to make 

conclusions about the drivers behind population differentiation observed in this 

study.  Further investigation of morphological plasticity and the above mentioned 

environmental traits affecting geoduck populations could aid managers with 

decisions on transplanting of juvenile clams across substrate types, should there 
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be an interest in developing a geoduck aquaculture fishery in California.  Aging 

samples from California may help elucidate when these populations established 

at a particular site.  If, for instance, different age groups are found in the same 

area, we can conclude that there were settlement pulses occurring in different 

years.  If all clams in an area show the same age, we can conclude there to be 

one major settlement pulse in that particular area.  The two intertidal populations 

examined showed a truncation in older age classes compared to subtidal sites.  

Using aquaculture techniques such as seeding of clams could ameliorate this 

pattern.  Further analysis of growth patterns (e.g. distance between annuli) could 

lead to an understanding of clam growth at particular sites.  Managers could use 

this information to inform fisheries model and stock assessment for P. generosa, 

which seek to forecast population biomass and target catch levels under different 

harvesting regimes.  Life history and demographic information from this study will 

provide the critical parameters needed for those population modeling efforts.  

Because geoducks exhibit significant spatial variability in life history traits, 

fisheries managers may use that information to develop regional-specific 

fisheries regulations and management plans, tuned to the demographic variability 

present along the coast.   

Finally, resource managers would benefit from an improved understanding 

of population abundance and spatial aggregation patterns in geoducks.  SCUBA 

surveys could help identify patterns of variability in population density throughout 

the state, and inform decisions of where fishing should be allowed.  It is unknown 
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whether California populations would be able to sustain a commercial fishery at 

this point in time, yet density studies as well as sex-ratio distributions could 

elucidate fishery sustainability, along with information on the life history and 

demography provided here.   

 
Conclusion 

 Geographically distinct locations may differ in environmental conditions 

from physical oceanographic factors such as sea surface temperatures and 

chlorophyll a levels, or geologic factors such as sediment composition.  In 

addition, sites may vary spatially in harvest pressure, predation risk, disease, or 

parasites, which could influence life history and morphological traits.  The present 

study used Pacific geoduck, Panopea generosa, populations from Washington, 

California, and Mexico to reveal variation in life history traits and morphology 

over large geographic scales.  The high profitability of P. generosa in Washington 

and Mexico could lead to interest in developing a commercial fishery or 

aquaculture industry for these clams in California.  However, more research is 

needed to make management recommendations.   
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