Exploration of the Capabilities of a New Stereo Video Tool for the Monitoring of Hard-Bottom Fish Species
 Christian Denney ${ }^{1 *}$, Anne Tagini¹, Donna Kline ${ }^{1}$, Mary Gleason², Rick Starr1, ${ }^{1}$

Introduction

- Rockfish Conservation Areas (RCAs) were created in 2002 by the Pacific Fisheries Management Council (PFMC) in response to drastic declines in several rockfish species
Monitoring has primarily consisted of annual trawl surveys over soft bottom habitat
Many species of rockfish occur primarily over hard bottom, high relief, complex habitats
We developed a new stereo video lander to survey and monitor hard bottom, complex habitats with minimum disturbance
This stereo video lander is a baited camera tool that drops directly to the bottom
The lander is controlled from the surface
Cameras rotate 360° and video is recorded on the lander as well as being piped up the umbilical
Since this is a new tool, it needed to be calibrated to understand how distance, angle, size, and other factors influence measurements
- In order to determine time needed for data collection, we analyzed species accumulation curves

Methods: Calibration

- Camera optics were calibrated with a cube of known size We used model fish in the MBARI test pool to calibrate measurement accuracy and precision
Calculated error as a percentage of body length
Calculated the viewable space with our camera setup Calculated observed area and volume for every drop Calculated fish density $\left(\# / \mathrm{m}^{2}\right.$ or m^{3}) allows comparisons to other visual surveys

Figure 1: Error as a percentage of body length plotted against angle away from the camera, zero degrees being perpendicular to the camera. Error was always $\leq 5 \%$ of TL

Figure 2: Diagram of the theoretical observable space. Measurements of all the relevant angles and distances were made in the MBARI test pool to allow for quantification of this
space. space.

Methods: Accumulation Curves

- Compared baited vs. un-baited drops
- Performed 30 minute soaks
- Found time at which 80% of species had been observed

$\begin{array}{llllllllllll}0 & 3 & 6 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37\end{array}$

Figure 3:Average number of species seen over time for
baited drops fit with a log curve Black curves represent the
best fit lines for the SE values.
best fit lines for the SE values.

Figure 4: Average number of species seen over time on unbaited drops. Black curves represent fit lines for the best fit line for the SE values

Methods: Video analysis

- Video was collected in 2013 for 12 minutes. These 12 minute collection periods are called "drops". There are multiple drops on a single deployment, which is the period between when the lander is put in the water and recovered During a drop, each full rotation of the cameras, which takes approximately a minute, is referred to as a sweep.
- In order to analyze these data, the video files are loaded into SeaGIS analysis software, EventMeasure along with calibration files created in SeaGIS CAL software (http://www.seagis.com.au/)
Each individual fish is identified to lowest taxonomic level
We measure fish in the sweep with the highest number of individuals of a particular species which provides a conservative estimate and prevents double counting
Habitat metrics such as depth, relief, and rugosity were recorded

Number of fish seen per sweep

- From the fall 2013 cruise, all fishes observed from each drop were tallied

Average number of fish in each sweep for several species was calculated, one sweep is approximately one minute Additionally, the average number of species observed per sweep was recorded These data suggest that there is likely no large attractive or repulsive effects of the lander

Figure 5: The average number of species observed on each sweep with SE bars shown.

Figure 7: Average number of S. rubberimus
observed on each sweep with SE bars shown

Figure 9: Average number of O. elongatus observed on each sweep with SE bars shown

Figure 11: Average number of S. chlorostictus observed on each sweep with SE bars shown

Figure 6: Average number of S. pinniger individuals seen per sweep with SE bars shown

Figure 8: Average number of S. paucispinus observed on each sweep with SE bars shown

Figure 10: Average number of S. miniatus observed on each sweep with SE bars shown. S. miniatus was one of most abundant species observed.

Figure 12: Average number of S. caurinus observed on each sweep with SE bars shown

Acknowledgments:

We would like to thank the following organizations and people: Marine Applied Research and Education (MARE: Dirk Rosen, Rick Botman, David Jeffrey, Andy Lauermann), crew of the F/V Donna Kathleen (Captain Tim Maricich, Donna Maricich, Tyler Maricich, Josh Maricich), The Nature Conservancy (Mary Gleason, Steve Reinecke), The Environmental Defense Fund (Huff McGonigal). Photo credits: Rick Starr, Donna Kline

Sear Cifinut
EDF
ENVIRONMENTAL
DEFENSE FUND
Finding the ways that work

