Application of An Index Method (AIM) to Data Rich Situations: Can Simple Methods Capture Major Features of Complex Assessments?

Paul J. Rago and Christopher M. Legault National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, MA

Information Content of Data

- Fishery assessments depend on detection of relationship between population and removals
- At a minimum, would like to answer the following questions,
- What level of exploitation will maintain the status quo?
- What level of exploitation is necessary to increase probability of population growth?
- What levels are expected to result in population decline?

$$
\begin{aligned}
& \text { "...we have concluded that the control charts based on the same principles as } \\
& \text { those used in the quality control of manufacturing processes could, if suitably } \\
& \text { developed, be a most useful tool for this purpose." } \\
& \text { Beverton and Holt } 1957
\end{aligned}
$$

Two Pieces of Data

- Time series of catch
- Can use landings if that's all you have
- Time series of relative abundance (index)
- Fishery independent survey
- CPUE

Create relative F and replacement ratio

Relative F

$$
\operatorname{relF}_{t}^{C}=\frac{C_{t}}{\left(\frac{I_{t-1}+I_{t}+I_{t+1}}{3}\right)} \quad \operatorname{relF}_{t}^{L}=\frac{C_{t}}{\left(\frac{I_{t-2}+I_{t-1}+I_{t}}{3}\right)}
$$

where relF $_{t}=$ relative F at time t
$C_{t}=$ catch or landings of stock s at time t (weight)
$I_{t}=$ index of abundance at time t (weight)

Replacement Ratio

Derivation starts with basic biology, then does some simple algebra to produce

$$
\Psi_{t}=\frac{B_{t}}{\alpha B_{t-1} S^{1} W_{1}+\alpha B_{t-2} S^{2} W_{2}+\alpha B_{t-3} S^{3} W_{3}+\ldots+\alpha B_{t-(A-1)} S^{A-1} W_{A-1}+\alpha B_{t-A} S^{A} W_{A}}
$$

Next substitute $I_{t}=q B_{t}$ and make some simplifying assumptions to end with

$$
\Psi_{t}=\frac{I_{t}}{\sum_{j=1}^{A} \frac{I_{t-j}}{A}}
$$

When the replacement ratio is greater than one the population is growing; and vice versa.

2 pieces of data x

2 derived ratios

=

6 Panel Plots
(new math)

Initial Data: Landings and Survey

Phase-plane Survey vs relative F

/

g Gulf of Maine Haddock, Fall Survey

Note that the recovery path is generally different that the depletion path.

Negative correlation between replacement ratio and relative F is expected. Is it greater than expected due to chance alone?

Construct the sampling distribution of correlation coefficient using randomization techniques.

Observed Correlation between
Replacement ratio and relative $\mathrm{F}=-0.632$
Prob(Corr <-0.632) <0.001

Use bootstrapping to estimate uncertainty in relative F at replacement.

Status Determination

- Current relF vs relF threshold : overfishing
- Current index vs index threshold: : overfished
- Need external info, relF threshold $=$ MSY/index $_{\text {threshold }}$

AIM	Age-based Assessment			Odds ratio 25
	Overfishing Not Overfishing	Overfishing	Not Overfishing	
		5	1	
		1	5	
AIM		Age-based Assessment		
		Overfishing	Not Overfishing	
	Overfishing	9	2	Odds ratio 12
	Not Overfishing	3	8	

Nonstationarity

Simple models can fail when complex models fail

What Else Can Go Wrong?

- Infinite number of replacement levels
- Time series only heavily over or under fished
- Will still get an estimated relF threshold , but may not be optimal
- Strong recruitment pulse can cause positive relationship between relF and replacement ratio
- Too much noise in catch or index can result in non-significant relationship between relF and replacement ratio
- Catch may not be major influence on abundance

What Isn't Needed

- Biology
- M
- Longevity
- Maturity
- Fishery
- Selectivity
- Index
- Catchability coefficient
- Large amount of time to conduct analysis

http://nft.nefsc.noaa.gov/

Suggestions for California

- Apply simple methods such as AIM to all stocks with available data
- Some models won't work
- Diagnostics might hint towards what went wrong to guide future data collection
- Not much invested, so not much lost
- Some models will work
- Quick advice
- Evaluate whether more data collection warranted
- Simple \neq bad

