

A case study in successful management of a datapoor fishery using simple decision rules: the Queensland spanner crab fishery

Cathy Dichmont:

CSIRO

Ian Brown:

CSIRO

Queensland Department of Primary Industries and Fisheries

Fishery background

- Simple fishery almost no bycatch
 - low value, small
 - Live export
- Middle end of "data poor"
 - have catch and effort
 - high uncertainty in biology
- Moved to TAC/ITQ fishery, despite:
 - no assessment
 - no real knowledge of sustainable catch -> adaptive management
- Cheap catch monitoring mobile/cell phones
- Good co-management

History

Management Strategy Evaluation

- Multiple plausible operating models
- Want harvest strategies (management procedure) robust to uncertainty

Harvest strategies

- MSE 1 (1998)
 - Harvest strategies aim to be clear and simple
 - Slope of regression of CPUE over past 5 years for 5 "stocks"
 - Create effort weighted pooled index
 - TAC changed based on index
 - Some back-up rules to protect single stocks
 - Initial TAC (for political reasons) set too high
- MSE 2 (2001)
 - Cyclical pattern in catch rates caused problems
 - Rules modified
 - Longer cpue series
 - Bi-ennial TAC
- MSE 3 (2007)
 - Better idea of economic and biological "sustainable" catch
 - Constant catch and only deviate up/down when big changes
 - Included independent survey data
- Detailed rules in paper

Advantages

- Gained economic and other benefits of ITQ system e.g. fish when best for market and costs
 - Concentrating on high value live transport fishery
 - Lack of assessment did not stop fishery from moving to ITQs
 - Cheap catch monitoring with mobile phones
- TAC is set by well-defined rules:
 - simple, easy to understand,
 - transparent, inexpensive and
 - Quick/cheap to produce
- Industry major contribution to subsequent rules
- Industry spent money (saved) on independent survey
- Catch rates are now the highest since logbook programme started

Disadvantages

- TAC system not useful in very data poor fisheries
 - Unless creates incentive to become data "rich"
- Absolute stock status is not known
 - need for greater precaution in harvest strategies
 - E.g. 'half up, full down' clauses in rules
- TACs initially have been quite volatile
 - in a quota trading environment, have been a cost to the industry
 - Now better idea of "best" TAC

Lessons learnt

- Avoid setting initial TAC too high
- Create robust harvest strategies using MSE
 - Operating models not conditioned (only plausible scenarios) unusual
 - were capable producing successful management system despite lack of knowledge
 - Robust rules
- Lack of knowledge should not stop choosing a "data rich" system
 - Fishery concentrated their effort on valuable live trade
- Simple ≠ bad
- Simple = easy to interpret, cheap, cost-effective
 - Empowers fishers to really contribute
- Be adaptable
 - change rules for good reasons
 - stick with overall principles (e.g. there will be rules)!
- Need co-management
 - Good working relationship between managers, industry and scientists