The data-richness spectrum and sustainability of California fisheries

Louis W. Botsford
D. Patrick Kilduff
Department of Wildlife, Fish and Conservation Biology
University of California
Davis, CA 95616

Workshop: Managing Data-Poor Fisheries: Case Studies, Models, and Solutions December 2008

Definition: Spectrum of data-richness

The distribution of combinations of data types available for each fishery

Why?

1. Overall level of certainty re: population health, risk....
2. Program for reduction in level of uncertainty.
3. Assessment at higher level than single population (ecosystem?)

Procedure:

1. Make a list of data combinations for each fishery (Table 1)
2. Analyze data combinations based on:
a. Precautionary Approach
b. Population Dynamics

Category	Species /Group	Landings	Effort	Size Composition	Age Composition	Stock Assessed	Life History
Nearshore Invertebrates	Abalone	C-1916	R-1975	R-1975			X
	Spiny Lobster	C-1916	C-1973	X			X
	Red Sea Urchin	C-1970	C-1988	X			X
	Purple Sea Urchin	C-1983					X
	Dungeness Crab	C-1916	X	X			X
	Rock Crabs (Yellow, Brown and Red)	C-1926					X
	Sheep Crab	C-1978					X
	Ocean Shrimp	C-1950	X				X
	Spot Prawn	C-1928					
	Ridgeback Prawn	C-1973	C-1986				X
	Red Rock Shrimp	C-1994	X				X
	Coonstripe Shrimp	C-1999					X
	Sea Cucumbers	C-1978	C-1993				
	Pismo Clam	C-1916 to 1947					X
	Sand Crab	C-1963					X
	Wavy Turban Snail	C-1992					X
	Rock Scallop	$R-1978$					
	Owl Limpet	C-1980s		X			X
	Kellet's Whelk	C-1979					X
Coastal Pelagic Species	California Market Squid	C-1916	C-1981				X
	Pacific Sardine	$C-1916$	C-1985	X	X	X	X
	Northern Anchovy	$C-1916$			X		X
	Pacific Mackerel	$C-1924$	R-1935		X	X	X
	Jack Mackerel	C-1924					X
Highly Migratory Species	Albacore	C-1916	C-1966	R-1983	X	X	X
	Swordfish	C-1916	X	X	X	X	X
	Pacific Northern Bluefin Tuna	C-1916	$R-1983$	R-1983		X	X
	Skipjack Tuna	C-1916	C-1975	C-1975		X	X
	Yellowfin Tuna	$C-1916$	$C-1975$	C-1975	X	X	X
	Striped Marilin	$R-1947$	C-1950s	X		X	X
	Shortfin Mako Shark	C-1977		X			X
	Thresher Sharks	C-1977		X			X
	Blue Shark	C-1977				X	X
	Great White Shark	$C-1979$					X
	Basking Shark	C-1991					X
	Salmon Shark	C-1977					X
	Opah	C-1976					
	Louvar Dolphin	$C-1984$ $R-1973$					
	Dolphin	R-1973	R-1983	R-1983			X

Precautionary Approach (FAO 1995)

Pre-1990s: Maximum Sustained Yield (MSY)
Post-1990s: Reference Points
Target Reference Point:
A goal such as MSY, OSY, MS Profit Limit Reference Point:

How do we determine this?

A state to be avoided, e.g. low biomass
If breeched, take drastic, pre-agreed action

PopulationSustainability

Age structured population with density-dependent recruitment

$$
R_{t}=\quad B_{t} \quad f\left[C_{t}\right]
$$

Recruitment $=$ Egg production \times Survival [density]
Where $\mathrm{B}_{\mathrm{t}}=\sum \mathrm{b}_{\mathrm{a}} \mathrm{n}_{\mathrm{a}, \mathrm{t}}$ and $\mathrm{C}_{\mathrm{t}}=\sum \mathrm{c}_{\mathrm{a}} \mathrm{n}_{\mathrm{a}, \mathrm{t}}$

Questions: Equilibrium? Collapse?
Answer: Graphical interpretation: Sissenwine and Shepherd 1987

Question: what is the population equilibrium, and when does it go to zero, i.e., when does the population collapse?

Total egg production per year
Recruit $=$ fish entering population at young age

Sustainability of Populations: how hard can we fish?

Lifetime
Egg
Production
(LEP)

Note: Population collapses when $1 / \mathrm{LEP}=$ slope-at -the-origin of egg/recruit relationship (or
LEP<1/slope-at-low-abundance) Highly uncertain. Why?

Keep track of LEP, what else?

Theory: random age structured populations, no densitydependence (Tuljapurkar refs, Lande and Orzack (1988))

Probability of N dropping below certain level N_{E} from $\ln \left[\mathrm{N}_{\mathrm{T}} / \mathrm{N}_{0}\right]=$ Gaussian[mT, $\left.\mathrm{o}^{2} \mathrm{~T}\right]$

OR: $\quad N_{T} \sim N_{0} e^{\mu \top}$
To keep prob[collapse] low, we should keep N_{0} and growth rate from becoming too low.

In practical terms, we therefore track N gr B and LEP

$$
\text { abundance, } \quad \text { Current growth, }
$$ biomass replacement rate

How much LEP is enough? 1. We express this as a fraction of natural, unfished LEP (i.e., FLEP).

2. From examples where we have data:

35\% (Clark 1991)
30\% (Mace and Sissenwine 1993)
40\% (Clark 1993, Mace 1994)
55-60\% (Dorn 2002, for rockfishes)

FLEP a.k.a. Spawning Potential Ratio

How much N or B is enough?

Again choose value relative to unfished value, e.g., . 4 or .5 times

$$
\mathrm{N}_{0} \text { or } \mathrm{B}_{0}
$$

Summary:

To avoid collapse, track and set limits on

1. Abundance or biomass AND 2.replacement rate

Similar to NMFS:

Control rules track

1. Spawning biomass (overfished)
2. Fishing mortality rate F (overfishing)

Set to MSY levels, $\mathrm{B}_{\mathrm{MSY}}, \mathrm{F}_{\mathrm{MSY}}$
In data moderate case (US west coast),
$F_{35 \%}$ used as proxy for $F_{M S Y}$

California (also similar):

"Resources are continuously replaced, taking into account fluctuations in abundance and environmental variability" (Fish \& Game Code 99.5(a))

Follows federal example (Restrepo, et al. 1998)

See California's Marine Life Management Act (1999) and Phipps, et al. (2009) this workshop

Data types in all 149 species

Question: Do the fisheries w/o assessments have sufficient data to estimate depletion of replacement?

Of the 149 fished species in California,

46 (31 percent) have stock assessments
8 have a data-poor assessment of FLEP, reduction in replacement (from size distributions)

No data-poor assessments of depletion in abundance (e.g., from CPUE)

FLEP estimated for several California

Blue rockfish
Black rockfish
Brown rockfish
China Rockfish*
Copper rockfish
Kelp rockfish*
Olive rockfish
Sanddab*

32\%
13\%
$>100 \%$
47\%
22\% Concern
>100\%
20\% Concern
100\%

Conclusions:

California has stock assessments for 46 of 149 species (almost a third)

Based on data presence/absence, it has the potential for assessing depletion or reduction in replacement for about another third.

We recommend they pursue these "partial, data-poor assessments " in addition to additional data gathering and stock assessments.

THANKS

Marine
 Ecosystem
 Management

At UCDavis, the Ag school

Fisheries Management

Initially, we don't know the egg/recruit relationship.
Specify seasons, number of boats, size limits, etc.
As fishing increases, LEP, equilibrium decline.

Egg production
There is uncertainty in:

1. Current recruitment, egg production, i.e., effects of management
2. Where population collapses (i.e., slope-at-origin)

LEP, a measure of Replacement

 (Here same as EPR)Sustainability requires that individuals in a population replace themselves in their lifetime.

In humans, a couple replaces themselves with 2 babies

We can observe eggs. How many eggs does it take to replace one fish?
1/(slope of egg-recruit curve at low levels)

Similar to NMFS, but different rationale

Track B and F to determine Overfishing and Overfished

Try to keep biomass from sinking too low by taking action when estimated biomass and growth rates are low.

Results: data grouped as in Leet, et al. (2003)

Category	Total Number Species/Groups	Landings	Effort	Size Composition Composition	Stock Assessed	Life HistoryNo Fishery Data		
Nearshore Invertebrates	19	18	8	5	0	0	16	1
Nearshore Finfish	68	65	46	47	10	13	54	3
Coastal Pelagic Species	5	5	3	1	3	2	5	0
Highly Migratory Species	15	15	7	9	3	7	13	0
Groundfish	19	19	16	19	12	19	18	0
Salmon Estuarine	4	4	3	4	3	3	4	0
Invertebrates	6	1	2	0	0	0	6	4
Estuarine Finfish	13	8	4	5	1	2	12	5
Total	149	135	89	90	32	46	128	13

