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ABSTRACT

NEARSHORE FISH ASSEMBLAGE PATTERNS WITH RESPECT TO
LANDSCAPE-SCALE HABITATS IN CENTRAL CALIFONIA

by Kristin I. Hunter-Thomson

In most ecosystems, the distribution of species across a landscape is greatly

influenced by the type, amount, and spatial configuration of habitats.  Studies in

terrestrial environments have shown that species diversity, density, and length frequency

often positively correlate with the size of a habitat patch, patch shape, and proximity to a

patch edge.  These patterns, however, have not been conclusively shown in temperate

sub-tidal marine studies.  Data from visual strip-transects collected from the Delta

submersible were used to characterize fish assemblages with respect to rocky bank

habitat patches.  Specifically, the density, diversity, and length frequency of nearshore

fishes were examined with respect to 1) proximity to the patch edge, 2) patch shape, and

3) patch size near Point Lobos and Point Sur, California.  Diversity and length

distributions of fishes were significantly greater at the edge than the interior of rocky

bank patches.  Therefore, landscape-scale patterns with respect to the distribution of

nearshore fishes exist.  However, this study also demonstrated that terrestrial paradigms

are not directly applicable to temperate sub-tidal marine habitats.  The relationship

between species richness and patch shape was opposite of patterns observed in terrestrial

systems.  Additionally, patch size explained more of the variability in the nearshore fish

assemblages than patch shape; however, neither were good predictive indicators of the

density of fishes.
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Introduction

The spatial scales at which ecological processes occur vary (Wiens 1989, Risser

1995), ranging from smaller than tens of centimeters (e.g., Eggleston et al. 1998) to larger

than hundreds of kilometers (e.g., Woodroffe and Ginsberg 1998).  At a fine-scale, the

distribution of individuals can be driven by habitat selection, species mobility, and prey

availability among other things (Wiens 1976).  For example, aquatic and marine studies

have demonstrated associations between species distribution and lithology for many

fishes and invertebrates (Osman 1977, Vannote and Minshall 1982, Ault and Johnson

1998, Wang et al. 2003, Anderson et al. 2005b).  At an intermediate-scale, intra- and

inter-specific interactions (Gosz 1993, Turner 2005) or habitat types (Kareiva 1990,

Ciannelli et al. 2008) also can drive patterns in the distribution of assemblages.  Finally at

a broad-scale, the movement of energy and matter, through air and water (Turner 2005,

Genin 2004) and across landforms (MacArthur and Wilson 1967), influences the

distribution of populations across ecosystems.

Ecological processes at fine and broad scales are well investigated, but few

studies of factors influencing ecological processes at intermediate, or landscape, scales

exist.  The field of landscape ecology was developed to gain an understanding of the

patterns and processes that occur across landscapes.  A landscape is defined as a distinct

spatial area that contains multiple patches of different habitat types (Forman and Godron

1986, Turner 2005).  In landscape ecology, the unit of measure is a habitat patch.

Research in landscape ecology is characterized by studies of patterns of biotic processes
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at the assemblage and species level with respect to the spatial distributions of habitat

patches (Forman and Godron 1981, Turner et al. 2001, Turner 2005).  The scale of a

landscape is defined as the scale that is relevant to a species’ distribution or ecological

processes of interest (Wiens 1989, Gosz 1993).

A habitat patch is defined as an area that differs from its surroundings, is

relatively homogeneous, and has a distinct boundary (Forman 1995, Fagan et al. 1999).

The distribution, orientation, and shape of habitat patches have been shown to influence

the distribution of organisms (Forman and Godron 1986).  Within a habitat patch, fine-

scale habitat type variation exists.  For example within a stream, the streambed can

contain pebble and sand substrates, which can influence the distribution of organisms

(Hynes 1970).  Thus, some researchers have used the term habitat patch to define these

fine-scale habitat type variations (e.g., pebble, sand) rather than the larger-scale habitat

(e.g., the stream).  However, this study uses the convention in landscape ecology to refer

to the larger-scale habitat as the habitat patch (Kotliar and Wiens 1990).

Clear patterns in the assemblage structure of organisms with respect to landscape-

scale habitat characteristics have been observed in terrestrial environments.  For example,

the density and diversity of the faunal assemblage in a habitat patch often correlates with

three landscape-scale habitat characteristics: proximity to the edge of the habitat patch,

habitat patch shape, and habitat patch size.  First, species density and diversity have been

shown to increase with proximity to the habitat patch edge, or at the ecotone (Odum

1958, Yahner 1988, Temple and Cary 1988).  In addition, the abundance of larger

individuals increases closer to the habitat patch edge (Connolly 1994).  Second, habitat
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patches with more complex shapes have higher species density and diversity as well as a

wider breadth of sizes of organisms (Kunin 1998, Fagan et al. 1999, Oksanen et al. 1992).

Third, species density and diversity increase with increasing habitat patch area (van Dorp

and Opdam 1987, Gosz 1993, Attrill et al. 2000).

Although these repeatable patterns between organisms and the environment are

common on land, they have not been conclusively shown to occur in the marine

environment.  This is partially because ecological studies of species-habitat associations

in the oceans have historically been focused at a smaller scale than in terrestrial studies.

Most observations and experiments of marine species-habitat interactions have been

conducted at the scale of centimeters to meters (e.g., Pearcy et al. 1989, Stein et al. 1992,

Yoklavich et al. 2000, Heggenes and Saltveit 2007, Lindsay et al. 2008).  Additionally,

sub-tidal marine environments are remote and have been difficult to study.  There is

growing interest, however, in the value of understanding and quantifying the patterns in

the distribution of organisms with respect to larger scale patches (hundreds of meters to

kilometers; Kritzer and Sale 2006).  Studies investigating the interactions between

organisms and the marine environment across larger scales of the landscape are now

being pursued more in the oceans (Wiens 1989, Irlandi 1994).  Initial marine studies,

though, have not shown a clear correspondence with terrestrial studies.  Therefore,

questions still remain about whether assemblage structures in the oceans are influenced

by landscape-scale habitat characteristics in a similar manner as terrestrial assemblages.

In addition, the majority of landscape-scale studies in the oceans has investigated patterns

of distributions of invertebrates and fishes in seagrass meadows (e.g., Irlandi et al. 1999,
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Eggleston et al. 1999, Brooks and Bell 2001).  Only a few studies have investigated

patterns in invertebrate assemblage structure in temperate rocky bank habitats (e.g.,

Selgrath et al. 2007); no studies have examined patterns in fish assemblages with respect

to landscape-scale habitat characteristics in temperate rocky bank habitats.

Rocky bank habitats are a common geological feature along the continental shelf

of the US west coast in water depths of 0 – 200 m (Greene et al. 1999).  Rocky habitats

are comprised of fine-scale habitat types such as bedrock outcrops, pinnacles, rocky

banks, and boulder fields.  Unique assemblages of fishes are often observed in rocky

bank habitats (Allen et al. 2006).  These assemblages are primarily dominated by rockfish

(Sebastes spp.) and have been described for central California by Love et al. (2002) and

Love and Yoklavich (2006).

The objectives of this study were to determine if there are patterns in the

assemblage structure of nearshore fishes with respect to landscape-scale habitat

characteristics and whether or not these patterns persist across two regions of central

California.  In this study, the landscape-scale habitat patches investigated were rocky

bank habitat patches (hereafter referred to as rocky bank patches), which occur at the

scale of hundreds of meters in water depths of 30 – 100 m.  Data from multi-beam sonar

surveys was used to identify rocky bank patches and used observational data from

submersible surveys to analyze patterns in the nearshore fish assemblage with respect to

the spatial distribution and patterns of the rocky bank patches.  The biological response

variables that investigated were species density and biomass, diversity of the assemblage,

and size composition.  Patterns in these biological response variables were analyzed with
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respect to five independent habitat variables of the rocky bank patch: proximity to the

edge, shape (as measured by the perimeter-to-area ratio, see methods), area, depth, and

rugosity.  Additionally, patterns in the density and lengths of four species groups and the

seven most abundant species within the assemblage with respect to the independent

habitat variables were compared to determine if certain species groups or species are the

most important in determining observed assemblage patterns.  Finally, patterns of the

biological response variables of the assemblage with respect to the independent habitat

variables were compared between two distinct regions (near Point Lobos and near Point

Sur).

Background

Terrestrial Landscape Ecology

During the early 20th century, wildlife managers observed differences in species

composition between the edge and the interior of habitat patches in terrestrial ecosystems

(see summary by Turner 2005).  The discovery of gradients in assemblage composition

across a landscape resulted in an increased scientific interest in studying changes in

ecological processes at the boundaries of habitat patches and the patterns of species

distribution across landscapes.  By the 1970s, terrestrial scientists had determined that the

structure of the assemblage of organisms was a function of the type, availability, and

spatial configuration of the habitat patches within the landscape (Forman and Godron
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1986).  Subsequent ecological studies have shown, for example, that the configuration of

habitat patches in a landscape influences patterns of processes related to gene flow

(Manel et al. 2003), population dynamics (Kareiva 1990), and assemblage structure

(Wiens et al. 1993).  Both Wiens (1976) and Saunders et al. (1991) provide reviews of

the responses of populations to the spatial structure of landscapes, including changes in

predation, competition, dispersal, and movement.  Additionally, published studies have

demonstrated differences in species-specific size and ontogenetic differences in

distribution with respect to habitat-characteristics across a landscape (as summarized by

Turner et al. 2001).

Predictable patterns of species distributions across a landscape have been

attributed to distance from the edge of a habitat patch, habitat patch shape, and habitat

patch area.  Field experiments and theoretical models have shown that species density

and diversity increase with proximity to the habitat patch edge, or at the ecotone (Yahner

1988, Temple and Cary 1988, Connolly 1994, Risser 1995, Fagan et al. 1999, Lidicker

1999, Bolger et al. 2000).  Ward et al. (1999) highlighted that the magnitude of this

increase in density with proximity to the habitat patch edge varies among species.

Overall, the species diversity of an assemblage is elevated at the edge in comparison with

the interior of the habitat patch.  Furthermore, different species occur at the edge than at

the interior of the habitat patch (Yahner 1988, Oksanen et al. 1992, Lidicker 1995, With

and Crist 1995).  Also, individuals of larger size of individual species are more frequently

observed closer to the habitat patch edge than within the interior of a habitat patch
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(Connolly 1994, Donovan et al. 1997, Yahner 1998, Tanner 2005, Turner 2005, Wilson

et al. 2008).

Terrestrial studies also indicate that the shape of a habitat patch influences

patterns in species distribution (Diamond 1975, Wilson and Willis 1975, Saunders et al.

1991, Golden and Crist 2000).  Field experiments have illustrated that habitat patches

with larger perimeter-to-area ratios have higher species density and diversity (Kunin

1998, Fagan et al. 1999, Bowden et al. 2001).  These distributional patterns have been

attributed to increases in foraging opportunities and other life history characteristics

(Hawrot and Niemi 1996).  Additionally, the size structures of different species vary with

habitat patch shape.  Habitat patches with greater perimeter-to-area ratios have a wider

breadth of sizes of organisms than habitat patches with smaller ratios (Oksanen et al.

1992).

The area of a habitat patch also influences the density and diversity of an

assemblage.  Species diversity and richness increase with increases in habitat patch area

(Gosz 1993, Attrill et al. 2000, Bolger et al. 2000, Hovel et al. 2002, Heegaard et al.

2007).  However, not all species respond similarly to the change in habitat patch size.

For example, Bender et al. (1998) summarized how different species respond to patch

sizes; they reported that edge- and interior-specific species are more influenced by

changes in patch size than generalist species.  Additionally, the literature is currently

divided about whether increases in patch size result in an increase or decrease in species

density (see review by Bowman et al. 2002).  In fact, Bowers and Matter (1997)

determined that the density-area relationship was scale dependent; negative density-area
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relationships are observed in small-scale habitat patches whereas positive relationships

occur in large-scale habitat patches.

Marine Landscape Ecology

Marine scientists have begun to ask landscape-scale ecological questions,

especially related to assemblage structure in seagrass, coral reef, and rocky habitats

(Wiens 1989, Irlandi 1994, García-Charton et al. 2004).  The early studies, which

described patterns in species distribution with respect to landscape-scale habitat

characteristics, have shown evidence both in support of and in opposition to the patterns

observed in terrestrial studies.  A variety of studies has examined terrestrial paradigms in

eelgrass patches.  For example, species density and diversity increased both with edge

proximity (Irlandi 1994, Friedlander and Parrish 1998, Bologna and Heck 2002) and

increasing marine patch shape complexity (Irlandi 1997, Eggleston et al. 1999, Hovel and

Lipcius 2001).  Also, an investigation of the patterns of species distribution on reef

patches described a positive correlation of species density and diversity to edge proximity

and higher perimeter-to-area ratios (Selgrath et al. 2007).  In one study, the size structure

of fish assemblages also changed with habitat patch shape (Irlandi et al. 1995).  Finally,

Bowden et al. (2001) observed increases in the total number of taxa in seagrass patches of

greater area.

Several other studies, however, have reported marine landscape patterns that

contradict those predicted from terrestrial landscape ecology, indicating a need to
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investigate landscape-scale questions further in marine systems.  Jelbart et al. (2006)

determined that diversity of fishes decreased with proximity to the edge of an eelgrass

patch due to increased predation rates.  Hovel et al. (2002) observed no clear pattern in

the relationship between species density and eelgrass patch shape.  Similarly, García-

Charton et al. (2004) observed positive, negative, and non-linear relationships between

fish species abundance and reef patch size as well as no relationship among species

biomass and landscape-scale habitat characteristics.  Additionally, Johnson et al. (1994)

determined that suitable prey were substantially more abundant within the reef patch than

in adjacent sand patches for four reef fishes in southern California, suggesting that the

edge of a reef patch did not provide the presumed increase in foraging opportunities for

predators.  Baltz et al. (1993) and Eggleston et al. (1998) illustrated that the patterns of

species density across a landscape were influenced by the size of the marsh fishes and

macro-fauna sampled rather than the habitat characteristics of the landscape.

The ability to model marine systems using patterns observed in terrestrial systems

is increasingly being questioned.  For example, Hovel et al. (2002) observed that the

distribution of faunal densities is influenced by many covarying environmental factors, at

multiple spatial scales in eelgrass meadows, and these relationships change seasonally.

They suggested that because the number of factors that vary are greater in marine

environments than on land they were unable to replicate terrestrial patterns in their study.

In addition, Carr et al. (2003) summarized differences between terrestrial and marine

systems that result in altered patterns in the structure and dynamics (spatial, genetic, and

trophic) of the biology of marine environments (see Table 1 in Carr et al. 2003).  They
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attribute these differences in patterns at the assemblage, population, and ecosystem levels

to the greater “openness” of marine systems.  Hovel et al. (2002) and Carr et al. (2003)

emphasized the need to investigate whether terrestrial paradigms are applicable to marine

systems despite these differences.

To date, landscape-scale studies examining patterns of species distribution in

marine landscapes have been focused on estuaries and tropical reefs.  Ebeling and Hixon

(1991) reviewed the differences in the structure of fish assemblages and causes for the

differences between tropical and temperate reefs, indicating that patterns observed in

tropical ecosystems may not apply to temperate ecosystems.  Additionally, only a few

studies have investigated questions regarding fish-habitat relationships with respect to

landscape-scale habitat characteristics in the temperate, sub-tidal marine system.  As

Anderson et al. (2005a) and Anderson and Yoklavich (2007) identified, the lack of

knowledge of the ecological processes at larger scales limits the effectiveness of local

fisheries management in temperate regions because there is a disconnect between the

scale of the data (tens of meters) and the scale needed for management (hundreds of

meters to kilometers).

In situ Fish Surveys

Human-occupied submersible surveys have proven to be an effective technique

for surveying nearshore fish populations in deep water (see Yoklavich and O’Connell

2008).  The use of a submersible enables researchers to observe fishes in their natural
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habitat.  From the data collected, scientists can calculate the density and diversity of

demersal fishes (e.g., Stein et al. 1992, Yoklavich et al. 2000).  Additionally, fine-scale

habitat data can be recorded, often following the protocol proposed by Greene et al.

(1999), thus enabling researchers to identify fish-habitat associations.

Data collected from in situ surveys also can be used for analyses of the

assemblage structure of fishes and of the relationship between the fish assemblage and

the surrounding habitat patch.  By utilizing multiple surveys throughout an area that align

with the scale of subpopulations or the home ranges of multiple species, researchers can

describe relationships among the assemblage structure and the heterogeneity of the

habitat patches at a landscape scale.  In combination with current seafloor maps, data

from a human-occupied submersible was used to quantify the assemblage structure and

relevant landscape-scale habitat characteristics along the central coast of California.  The

data used included fish species’ presence, abundance, and size as well as the geographic

location of each observed fish.  Using these techniques, this study provides the first in-

depth investigation of patterns in temperate sub-tidal fish assemblages with respect to the

landscape-scale spatial structure of the rocky bank landscape.
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Materials and Methods

Submersible Surveys and Study Sites

Data for this study were collected in 2004, 2007, and 2008 using a human-

occupied submersible, the Delta.  In 2004, surveys were conducted to develop a baseline

assessment of the densities and species composition of rockfishes and other nearshore

fishes within the newly established Rockfish Conservation Areas (PFMC 2009).  During

fall 2007 and 2008, submersible surveys were conducted to collect baseline assessments

of nearshore fish and macro-invertebrate assemblages inside and adjacent to nine Marine

Protected Areas (MPAs) in central California, which were established in September 2007

(Starr and Yoklavich 2008).

Data were collected following similar techniques as described in Yoklavich and

O’Connell (2008).  Ten-minute visual strip transects that were two meters wide and on

average 236 m long (range 41 – 402 m) were conducted to count fishes and invertebrates,

characterize fine-scale habitat types, and collect video records.  Fishes were identified to

the lowest taxonomic level possible, most often to species.  A few adjustments to the

techniques described by Yoklavich and O’Connell (2008) were used to collect the data

for this study.  For example in 2007 and 2008, a Doppler Velocity Log was attached to

the submersible, which provided a more accurate estimate of the distance traveled than

that obtained from the Track-point and WinFrog navigation systems or the laser count

methods previously used.  Tissot (2008) provided a summary of the at-sea and land-based
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data preparation and processing techniques used for data collected from the 2007 and

2008 submersible surveys.

Data from these projects were opportunistically used for this study.  All fish

survey transects that occurred within the designated rocky bank patches were included in

the study.  When necessary, the original fish transects were truncated to remove portions

outside of the rocky bank patches.  Therefore, the mean fish transect distance used in this

study was 199 m (range 8 – 351 m).  Each of the rocky bank patches contained between 3

and 9 fish transects.

In this study, the data used were collected from two regions of the central

California coast: near Point Lobos (36°31’19.8” N 121°57’9.0” W) and near Point Sur

(36°18’20.5” N 121°53’57.0” W; Fig. 1).  Within these two regions, this study focused

on the assemblage structure of fishes in the mid-depth rocky habitat from 30 – 100 m.

Allen et al. (2006) identified this depth zone as a faunal break for nearshore fish

assemblages.1  While these two regions are in close proximity (roughly 50 km apart),

each has distinct characteristics that may influence the habitats and fish distributions.  For

example, each region is composed of different bedrock types; Point Lobos is porphyritic

granodiorite while Point Sur is metamorphic sandstone (Blake and Jones 1981, Norris

and Webb 1990, Davidson et al. 2002).  Point Lobos contains multiple canyon heads,

whereas Point Sur is a large gradually slooping shelf (Fig. 1).

                                                  
1 Allen et al. (2006) describes this faunal assemblage within 30 – 100 m as the “mid-depth rocky habitat”
group, whereas Love et al. (2002) classifies the species group of rockfishes in the same depth range as the
“shallow shelf” assemblage.
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Fig. 1  Map of the study region highlighting the two focus regions: Point Lobos and Point
Sur.  The red boxes denote the regions in which the rocky bank patches included in this
study occurred.  The blue lines represent the 30 m (light blue) and 100 m (dark blue)
isobaths.  The seafloor bottom topography is depicted based on the 2-m side scan sonar
images
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Independent Habitat Variables

This study investigated landscape patterns at 37 rocky bank patches across the

central coast: 24 near Point Lobos and 13 near Point Sur.  Two criteria were used to

classify a rocky bank patch: the amount of fine-scale habitat and the sharpness of habitat

changes at the boundary.  For the first criterion, only rocky bank patches that were

predominantly (> 80%) rocky habitat (e.g., rock outcrop, boulder) were used.  Second, at

least 75% of the boundary of each patch had to abut a major change in habitat type (e.g.,

the habitat changed abruptly from rock to sand).  Following these criteria, 2-m resolution

side-scan sonar images loaded into ArcGIS were used to define and delineate the rocky

bank patches within the study sites (Fig. 2a-b).  All the rocky bank patches contained

similar fine-scale habitat types.  Rocky bank patches were distributed throughout the

selected 30 – 100 m depth range near Point Lobos, but were restricted to shallow depths

near Point Sur (< 55 m).  The mean rocky bank patch diameter was 288 m (range 114 –

714 m; Fig. 3).
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Fig. 2  Distribution of selected rocky bank patches near Point Lobos and Point Sur.  The
red polygons represent the rocky bank patches analyzed in this study (n = 37).  The blue
lines represent the 30 m (light blue) and 100 m (dark blue) isobaths.  Areas in light tan
represent soft sediment and dark brown areas represent hard bottom habitat based upon
GIS substrate layers from CSUMB Seafloor Mapping Lab
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Fig. 3  Frequency histogram of rocky bank patch diameters near Point Lobos and Point
Sur.  Dotted line denotes the mean rocky bank patch diameter (228 m)

The five independent habitat variables that this study evaluated for the selected

rocky bank patches were: proximity to the edge of a patch, patch shape, patch size, patch

depth, and patch rugosity (Table 1).  The edge of the rocky bank patch was defined as a

zone containing rock at the outer perimeter of the rocky habitat, thus excluding soft

sediment habitats adjacent to the rocky bank patch.  To determine an appropriate width

for the edge zone, sections of fish transects were assigned as edge or non-edge iteratively

using 2 m increments between 2 and 40 m from the rocky bank patch boundary.  For each

width of edge zone, the density and richness per unit area of fishes along fish transects

were calculated.  A natural break point in the data, as defined by a change in the slope,

was used as an objective measure to determine an appropriate edge zone width.  To

quantify differences between edge and interior areas of a rocky bank patch, a buffer

between the edge and interior zones was used to separate them in space, thus reducing



18

spatial autocorrelation.  To be conservative, a buffer width that was twice the width of the

edge zone was used.  Data along fish transects that occurred within the buffer were

removed from proximity to edge analyses.

Table 1  List of hypotheses and observed results.  The hypotheses and observed results
are for assemblage level analyses (a), species-group analyses (b), species-specific
analyses (c), and regional comparison assemblage analyses (d).  Hyp are the hypotheses
and Obs are the observed results.  The + represents a positive relationship, - represents a
negative relationship, ns means there was no significant relationship, S denotes shallow
patches, and D denotes deep rocky bank patches

a - Assemblage
Hyp Obs Hyp Obs Hyp Obs Hyp Obs Hyp Obs

Density + + + ns + ns (S & D) + ns + ns
Biomass + + + ns + ns (S & D) + ns + ns
Richness + ns + ns + + + - + +
Evenness + - + ns + + (S & D) + ns + ns
Heterogeneity + - + ns + + (S & D) + ns + ns

Patch SizeDepth Rugosity Distance to Edge Patch Shape

b - Species Groups
Hyp Obs Hyp Obs Hyp Obs Hyp Obs Hyp Obs

Density
large rockfishes + + + ns + ns (S), + (D) + ns + ns

dwarf rockfishes + + + ns + ns (S), + (D) + ns + ns
large non-rockfishes + ns + ns + ns + ns + ns
other benthic fishes - + + + + + (S), ns (D) + ns + ns

Length Distribution
large rockfishes + ns + ns + ns + ns + ns

dwarf rockfishes + + + - (S), + (D) - - (S), + (D) - + (S & D) + - (S), + (D)
large non-rockfishes + ns + N/A + ns + ns + ns
other benthic fishes + ns + ns + ns + ns + ns

Patch SizeDepth Rugosity Distance to Edge Patch Shape
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Table 1 cont.

c - Specific Species
Hyp Obs Hyp Obs Hyp Obs Hyp Obs Hyp Obs

Density
Blackeye Goby - - - ns + ns (S), + (D) + ns + ns
Blue Rockfish + - + - + ns + ns + ns

Painted Greenling - - + + + ns + ns + ns
Pygmy Rockfish + + - ns + ns + ns + ns

Rosy Rockfish + + + ns + ns + ns + ns
Squarespot Rockfish + + + ns + ns + ns + ns

Starry Rockfish + + + ns + ns + ns + ns
Biomass

Blackeye Goby - - - ns + ns (S), + (D) + ns + ns
Blue Rockfish + ns + ns + ns + ns + +

Painted Greenling - - + + + ns + ns + ns
Pygmy Rockfish + + - + + ns + ns + ns

Rosy Rockfish + + + ns + ns + ns + ns
Squarespot Rockfish + + + ns + ns + ns + +

Starry Rockfish + + + ns + ns + ns + +
Mean Length

Blackeye Goby - - - ns + + (S & D) + ns + ns
Blue Rockfish - ns + ns + ns + ns + ns

Painted Greenling - - + + + ns + ns + ns
Pygmy Rockfish + + - ns + ns (S), + (D) + ns + ns

Rosy Rockfish + + + ns + + (S & D) + ns + ns
Squarespot Rockfish + + + ns + ns (S), + (D) + ns + +

Starry Rockfish + + + ns + ns (S), + (D) + ns + +
Length Distribution

Blackeye Goby - ns - ns + ns + ns + ns
Blue Rockfish - ns + ns + ns + ns + ns

Painted Greenling - ns + ns + ns + ns + ns
Pygmy Rockfish + + - + (S & D) + ns + ns (S), + (D) + ns (S), + (D)

Rosy Rockfish + ns + ns + ns + ns + ns
Squarespot Rockfish + ns + ns + ns + + + +

Starry Rockfish + ns + ns + ns + ns + ns

Patch SizeDepth Rugosity Distance to Edge Patch Shape
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Table 1 cont.

The second and third independent habitat variables were the rocky bank patch

shape and patch size.  Using ArcGIS Hawth’s Tools extension the perimeter and area for

each rocky bank patch was deteremined.  The perimeter-to-area (P:A) ratio was

calculated for each rocky bank patch by dividing the perimeter by the area.  This ratio

measurement was used as a quantitative proxy for the patch shape.  When necessary, area

and P:A ratio data were binned to create two discrete categories using the mean value as

the break point for both area and P:A ratio.

The fourth and fifth habitat characteristics of the rocky bank patches analyzed

were patch depth and patch rugosity.  Mean depth per rocky bank patch was calculated

from the Seabird SBE19 Plus Seacat Profiler instrument attached to the submersible.  For

some analyses, depth was used to separate the data into two categories.  Shallow patches

included rocky bank patches in less than 55 m of water depth and deep rocky bank

d - Regional Comparison
Hyp Obs Hyp Obs Hyp Obs

Density
Point Lobos + ns + ns + ns

Point Sur + ns + ns + ns
Biomass

Point Lobos + ns + ns + ns
Point Sur + ns + ns + ns

Richness
Point Lobos + ns + - + +

Point Sur + ns + ns + ns
Evenness

Point Lobos + + + ns + ns
Point Sur + ns + ns + ns

Heterogeneity
Point Lobos + + + ns + ns

Point Sur + ns + ns + ns

Patch Shape Patch SizeDistance to Edge
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patches in waters greater than 65 m deep.  These depth bins were chosen to ensure equal

sample size between the shallow and deep portions of the data set.  ArcGIS data layers of

rugosity, from the CSUMB Seafloor Habitat Mapping Lab, were used to determine the

rugosity value for each position along the fish transects and for the rocky bank patches as

a whole.  Rugosity is often calculated as the non-dimensional relationship between the

surface area of the seafloor and the linear surface area (Luckhurst and Luckhurst 1978);

CSUMB uses digital elevation models to calculate the rugosity from high-resolution

multi-beam bathymetry.  Rugosity levels in the rocky bank patches range from 1.025 –

1.364; low rugosity was defined as values that ranged from 0 to 1.182 and high rugosity

as values greater than 1.182.  These divisions of low and high rugosity categories were

chosen because they correspond with the rugosity values of fine-scale habitat types

observed during the submersible surveys.

Biological Response Variables

Patterns of the fish assemblage were analyzed at three different levels of

biological organization: all fishes combined to represent the entire assemblage, fishes

separated into four species groups, and individual patterns for the seven most abundant

species.  Assemblage analyses were evaluated for all species observed on fish transects.

A subset of species was assigned to the four species groups by a combination of

taxonomy, size, and habitat association.  The species groups include: “large” rockfishes

(Sebastes spp.), dwarf rockfishes (Sebastes spp.), “large” non-rockfishes, and other
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benthic fishes (see Table 2 for list of the species comprising each group).  The seven

most abundant fishes observed on transects were used for species-specific analyses.

These seven species were chosen because they individually comprised more than 1% of

the total abundance of all fishes observed (Appendix A).  Although the independent

habitat variables used in this study may influence common and rare species differently

(Wiens 1976), there were insufficient data to test patterns of rare species with respect to

the independent habitat variables.

Table 2  Species that comprise each of the four species groups used for the species-group
analyses.  The published maximum total length per species is reported.  Species were
chosen based upon a similarity of taxonomy, size, and habitat associations

Seven biological response variables were used to define the structure of the

nearshore fish assemblage: richness, evenness, heterogeneity, density, biomass, mean

length, and length frequency distribution (Table 2).  The assemblage diversity indices

Species Group Scientific Name Common Name Maximum Total Length
Sebastes caurinus Copper Rockfish 66 cm
Sebastes constellatus Starry Rockfish 46 cm
Sebastes miniatus Vermilion Rockfish 76 cm
Sebastes paucispinis Bocaccio 91 cm
Sebastes pinniger Canary Rockfish 76 cm
Sebastes ruberrimus Yelloweye Rockfish 91 cm
Sebastes hopkinsi Sqaurespot Rockfish 29 cm
Sebastes rosaceus Rosy Rockfish 58 cm
Sebastes semicinctus Halfbanded Rockfish 25 cm
Sebastes wilsoni Pygmy Rockfish 23 cm
Hydrolagus colliei Pacific Ratfish 97 cm
Ophiodon elongatus Lingcod 152 cm
Hexagrammos decagrammus Kelp Greenling 61 cm
Oxylebius pictus Painted Greenling 25 cm
Scorpaena guttata California Scorpionfish 43 cm
Sebastes atrovirens Kelp Rockfish 42.5 cm
Sebastes carnatus Gopher Rockfish 42.5 cm

large rockfishes

dwarf rockfishes

large non-rockfishes

other benthic fishes
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(richness, evenness, and heterogeneity) were only calculated for the assemblage.  For the

diversity indices, the species richness, evenness (Pielou's evenness index), and

heterogeneity (Shannon-Wiener diversity index; Appendix C) were calculated.  Density

was calculated for the assemblage, species groups, and seven specific species.  Density

was calculated as the mean number of fishes per 10 m2 of area surveyed along each fish

transect.  Fish biomass of the assemblage and seven specific species, which also was

averaged along each fish transect, was calculated using the Fish Biomass Conversion

Equation (W = a*Lb; Anderson and Gutreuter 1983) and the collected size and frequency

data.  Published total length and total weight parameters (a and b) for each species, or the

most closely related species available, were used (Appendix B).  Finally, the size

structure of fishes was investigated using the both the mean length (seven specific

species) and length frequency distributions (species groups and seven specific species).

The length data were originally collected in 5 cm bins of the total lengths of fishes, thus

the length frequency analyses were conducted in 5 cm increments.

Analytical Techniques

First, patterns among the biological response variables were investigated at the

assemblage level with respect to the independent habitat variables near Point Lobos.  To

determine if these assemblage patterns were driven by specific species within the

assemblage, patterns in the biological response variables were then investigated for the

four species groups and seven specific species with respect to the independent habitat
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variables.  Finally, a comparison of the observed patterns in the structure of the nearshore

fish assemblages near Point Lobos with those observed near Point Sur was conducted.

All analyses were conducted using the software package R.

Analyses were made using rocky bank patches as the sample unit, with individual

fish transects within a patch as the subsamples of the rocky bank patch.  Fish density,

biomass, and mean length data were averaged across the subsamples.  The richness,

evenness, heterogeneity, and length frequency data were cumulative calculations among

the subsamples.  Analyses of patterns among the biological response variables and all

independent habitat variables followed these methods.  For all analyses an alpha of 0.05

was used to determine statistical significance.

Previous studies have reported that the structure of fish assemblages correlates

with depth and rugosity.  Therefore, the relationship among the biological response

variables with depth and then rugosity was investigated prior to analyzing the other

independent habitat variables.  If there was a significant relationship among a biological

response variable with depth this relationship was accounted for in further analyses.

These analyses were either conducted by comparing the biological response variable data

in bins, shallow and deep categories, or the residuals of depth and the biological response

variable with the independent habitat variable.  Additionally, prior to analyzing the

patterns of the biological response variable with respect to the proximity to edge, patch

shape, or patch size, the relationship between the biological response variable and

rugosity was analyzed, after accounting for depth.  Using binned or residual data it was

possible to ensure that the effect of depth did not mask the effects of other independent
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habitat variables on the biological response variables.  Appendix D includes the

distribution of rocky bank patches across depth zones and rugosity levels.

Density, Biomass, and Abundance Analyses.  Linear regressions and ANOVAs were

performed to investigate the relationships among the density of fishes (dependent

variable) and each independent habitat variable.  All of the following analyses were

repeated for each independent habitat variable.  Linear regressions were used to test for a

relationship between the continuous habitat data (depth, rugosity, patch shape, and patch

size) and fish density and biomass.  For these analyses, the density data, or when

necessary, the residuals of depth with density, was used to test the relationship with each

independent habitat variable.  ANOVAs were used to investigate patterns in density with

respect to proximity to the edge of a rocky bank patch.  If necessary, the data were split

for each biological response variable by depth category.  Then the analyses were

conducted on the relationship between proximity to edge and density separately for each

depth zone.  A significant difference in density between the edge and interior zones of a

rocky bank patch would indicate the presence of an edge effect.

Patterns in density at the assemblage level could mask more detailed responses of

specific species density with respect to each independent habitat variable.  Therefore,

regression and ANOVA analyses were repeated for both the four species groups and then

the seven most abundant species to compare the species group and species-specific

patterns of density with respect to each independent habitat variable.  All of the above
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analyses were repeated for biomass of the assemblage and the seven most abundant

species.

To determine if the abundances of the four species groups were distributed

proportionally with respect to the independent habitat variables, a Preference Index

(Krebs 1999) and Goodness-of-Fit (Quinn and Keough 2002) analyses were used.  The

Preference Index estimated the expected abundance, which was set at an equal

distribution between the independent habitat variable categories.  This represents the

utilization of habitat by fishes, rather than a true test of the preference of a species for a

specific habitat type.  The Goodness-of-Fit analyses compared the observed and expected

abundances against the categories of proximity to edge, rocky bank patch shape, and

rocky bank patch size.  The independent habitat variables were binned into two categories

based upon the mean value.  These tests were used to determine if the species groups

were proportionally distributed across each independent habitat variable category, i.e., if

species associated more strongly with certain habitat characteristics.

Assemblage Diversity Analyses (Richness, Evenness, and Heterogeneity).  Statistical tests

similar to those described above were used to compare species composition of the

assemblage, in terms of richness, evenness, and heterogeneity, to the independent habitat

variables.  The Bray-Curtis Index of Similarity was used to determine the similarity

matrix among the species composition across depth categories, proximity to edge

categories, and locations.  This metric is not sensitive to sample size, species diversity, or

proportional differences in abundance but is able to detect additive changes to the species
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composition of an assemblage (Krebs 1999).  The index ranges from 0, which is no

similarity, to 1, which is complete similarity; for this study 0.6 was used as the threshold

for similarity between assemblages, based off of the upper similarity range reported by

Cailliet and Barry (1979).

Mean Length and Length Frequency Distribution Analyses.  The final biological response

variable investigated was the length of individuals for the species groups and the seven

specific species.  Both the mean length and length frequency distributions were used for

analyses of the seven specific species, but only the length frequency distributions for the

species groups.  Linear regressions were used to determine if there were relationships

between the mean lengths of fishes and each independent habitat variable. ANOVAs

were used to investigate patterns in the mean length of each species between the edge and

interior zones of a rocky bank patch.  Also, the length frequency distributions in relation

to each independent habitat variable were compared using Kolmogorov-Smirnov tests.

These values were calculated by determining the cumulative length frequencies of each

species within a rocky bank patch across transects.  The cumulative values then were

averaged across rocky bank patches for each independent habitat variable.

Regional Comparison Analyses.  All of the statistical analyses conducted for the

biological response variables of the assemblage in shallow rocky bank patches near Point

Lobos were repeated for the assemblage data near Point Sur.  Only the shallow rocky

bank patches were used for the regional comparisons due to sample size constraints.   The
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same edge distance as defined for Point Lobos was used in Point Sur.  The results and

patterns in the biological response variables with respect to the independent habitat

variables were compared between the locations to determine if patterns were consistent

between two regions in central California.

Other Analyses.  Species accumulation curves were compiled for each depth category

near Point Lobos and for shallow rocky bank patches near Point Sur (Appendix E).

Additionally, the standard error and coefficient of variation for assemblage fish density

with respect to sample size were analyzed to further ensure a robust sample size

(Appendix E).  Using the method described by Bizzarro et al. (2007), the slope among the

final four points of each curve was calculated to determine if an asymptote was reached

(Appendix E).  Numerous studies have documented species-area relationships; therefore,

the data were resampled to calculate the cumulative number of species (S) across fish

transects as well as among the rocky bank patches.  Results from the resampling analyses

were compared with predicted values derived from the species-area relationship equation,

S = c*Az (Arrhenius 1921 summarized in Gotelli 2001), where A is area, and c and z are

fitted coefficients.  Additionally, the data were resampled to calculate the cumulative

abundance of species observed across fish transects as well as among the rocky bank

patches.
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Results

Species Abundance and Composition

During the fish transects used for this study, 38,845 fishes were identified and

enumerated.  A total of 68 fish taxa was recorded within the sample area and 58 of those

were identified to the species level (Appendix A).  Of the observed fishes, Sebastes was

the dominant genus within the assemblage (representing 50% of the taxa and 79.4% of

the total abundance).  A total of 8,156 fishes (26.3% of the total abundance) was recorded

in the generic “rockfish”2, sub-generic “Sebastomus”, or the “unidentified” categories.

These fishes were used for the assemblage analyses but not for the species groups or

species-specific analyses.  Near Point Lobos, 11 taxa accounted for > 1% of the total

abundance; near Point Sur, 13 taxa accounted for > 1% (Appendix A).  To compare

species-specific patterns, the most abundant species from Point Lobos were used.  The

species, in descending order, included Pygmy Rockfish (Sebastes wilsoni, Gilbert 1915),

Blackeye Goby (Rhinogobiops nicholsii, Bean 1882), Squarespot Rockfish (S.  hopkinsi,

Cramer 1895), Rosy Rockfish (S.  rosaceus, Girard 1854), Blue Rockfish (S.  mystinus,

Jordan and Gilbert 1881), Widow Rockfish (S.  entomelas, Jordan and Gilbert 1880),

Painted Greenling (Oxylebius pictus, Gill 1862), Starry Rockfish (S.  constellatus, Jordan

and Gilbert 1880), and Olive Rockfish (S.  serranoides, Eigenmann and Eigenmann

                                                  
2 Following data collection protocols fish are included in the “rockfish” category if they are from the genus
Sebastes but the observer is unable to identify the species or if the defining markings of the subgenus
Sebastomus were not visible.
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1890).  Widow and Olive Rockfish were not included in the analyses of the most

abundant species because they are mid-water species that are less associated with the

bottom habitats included in the submersible surveys.  Therefore, only 7 species were used

for the species-specific analyses.

Defining the Edge Width

The density of all fishes per unit area surveyed decreased rapidly with increasing

edge widths until around 12 m; adding additional edge width did not result in a

substantial change in the density per unit area surveyed (Fig. 4a).  Similarly, the richness

per unit area surveyed decreased rapidly with increasing edge width until it leveled off

around 12 m (Fig. 4b).  Additionally, the mean richness per unit area surveyed was 0.028,

which occurred at 12 m.  Therefore, the edge width zone was defined as the first 12 m

from the rocky bank patch boundary.  Data for the interior zone included fishes that were

observed at distances greater than 36 m from the rocky bank patch boundary.  All fishes

observed between 12 m and 36 m from the rocky bank patch boundary were removed

from analyses to spatially separate the edge and interior zones of the rocky bank patch.3

                                                  
3 Forty-two percent of the observed fish on fish transects were observed within the buffer zone of rocky
bank patches.
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Fig. 4  Assemblage density and richness per unit area surveyed at different widths of the
edge zone.  Density (a) and richness (b) per unit area surveyed of the nearshore fish
assemblage were calculated for each incremental cumulative 2 m width of edge zone
from 2 – 40 m.  Standard error is plotted as vertical bars

Assemblage Analyses

Depth and Rugosity.  The fish assemblage structure varied with respect to depth.  The

overall species composition similarity index between shallow and deep patches near

Point Lobos was only 0.493 (Fig. 5).
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Fig. 5 Species composition of the seven most abundant species by depth category near
Point Lobos.  The assemblage composition in proportional abundance (a) and the
observed abundance (b) are reported.  The unidentified fishes, those not identified to the
species level, and the 51 less-abundant species (whose abundance was less than 1% of the
total abundance) are pooled into the “other” category.  Depth classifications were defined
as shallow (< 55 m) and deep (> 65 m)

a
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Additionally, the density and biomass of all fishes significantly increased with increasing

depth (p = 0.001, p = 0.019, respectively), whereas the evenness (p = 0.019) and

heterogeneity (p = 0.007) significantly decreased with increasing depth (Table 3a,

Appendix G).  These significant relationships with depth were accounted for in

subsequent analyses by comparing the regression residuals of depth and the biological

response variable (density, biomass, evenness, or heterogeneity) with the subsequent

independent habitat variable.  There was no significant relationship between richness and

depth; therefore, subsequent analyses used the original data for this biological response

variable.  After accounting for the effect of depth on the biological response variables at

the assemblage level, there was no significant relationship among any of the biological

response variables and rugosity (Appendix G).

Table 3  Assemblage, species-groups, and species-specific relationships with respect to
depth and rugosity near Point Lobos.  Results are grouped by analyses: assemblage
indices with respect to depth and rugosity (a), species-group density and length
distributions with respect to depth (b) and rugosity (c), and species-specific relationships
with depth (d) and rugosity (e).  Statistically significant relationships are in bold

a - Assemblage 
p r2 Direction p r2 Direction

Density (fish/10m2) 0.001 0.419 Positive 0.811 0.003 No
Biomass (g/cm/10m2) 0.019 0.224 Positive 0.552 0.016 No
Richness 0.408 0.031 No 0.142 0.095 Negative
Evenness 0.019 0.225 Negative 0.899 0.001 No
Heterogeneity 0.007 0.291 Negative 0.448 0.026 No

Depth Rugosity

b - Species Groups (Depth)
p r2 Direction p D Direction

large rockfishes 0.002 0.354 Positive 0.993 0.130 No
dwarf rockfishes < 0.001 0.670 Positive < 0.001 0.215 Positive
large non-rockfishes 0.287 0.051 No 1.000 0.139 No
other benthic fishes < 0.001 0.497 Positive 1.000 0.099 No

Density (fish/10m2) Length Distribution
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Table 3 cont.

c - Species Groups (Rugosity)
p r2

Direction p D Direction
large rockfishes 0.793 0.003 No 1.000 0.087 No
dwarf rockfishes 0.278 0.053 No

Shallow < 0.001 0.317 Negative
Deep < 0.001 0.127 Positive

large non-rockfishes 0.688 0.007 No 1.000 0.139 No
other benthic fishes 0.032 0.192 Positive 1.000 0.035 No

Length DistributionDensity (fish/10m2)

d - Specific Species (Depth)
p r2 Direction p r2 Direction

Blackeye Goby 0.006 0.295 Negative 0.022 0.215 Negative
Blue Rockfish 0.047 0.168 Negative 0.059 0.152 No
Painted Greenling < 0.001 0.439 Negative 0.001 0.404 Negative
Pygmy Rockfish < 0.001 0.533 Positive 0.001 0.418 Positive
Rosy Rockfish 0.008 0.278 Positive 0.001 0.428 Positive
Squarespot Rockfish 0.001 0.382 Positive < 0.001 0.559 Positive
Starry Rockfish < 0.001 0.539 Positive 0.001 0.419 Positive

p r2 Direction p D Direction
Blackeye Goby 0.045 0.170 Negative 0.998 0.057 No
Blue Rockfish 0.063 0.148 No 0.282 0.324 No
Painted Greenling < 0.001 0.694 Negative 0.999 0.167 No
Pygmy Rockfish < 0.001 0.874 Positive < 0.001 0.296 Positive
Rosy Rockfish 0.001 0.404 Positive 0.085 0.222 No
Squarespot Rockfish < 0.001 0.720 Positive 0.248 0.207 No
Starry Rockfish 0.024 0.210 Positive 1.000 0.071 No

Biomass (g/cm/10m2)Density (fish/10m2)

Mean Length (cm) Length Distribution
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Table 3 cont.

Proximity to Edge.  Total density of fishes was not significantly different between the

edge and interior zones in shallow rocky bank patches (p = 0.627; Fig. 6a, Table 4).

Although the mean density of fishes in deep rocky bank patches was somewhat greater in

the edge than in the interior, it was not significantly different (p = 0.099; Fig. 6a).  The

fish assemblage biomass did not differ between the edge and interior zones in shallow

rocky bank patches (p = 0.463; Table 4), but was significantly greater in the edge than the

interior zones in deep patches (p = 0.036).

e - Specific Species (Rugosity)
p r2 Direction p r2 Direction

Blackeye Goby 0.459 0.025 No 0.460 0.025 No
Blue Rockfish 0.023 0.213 Negative 0.116 0.108 No
Painted Greenling 0.014 0.243 Positive 0.013 0.248 Positive
Pygmy Rockfish 0.242 0.062 No 0.024 0.212 Positive
Rosy Rockfish 0.589 0.014 No 0.718 0.006 No
Squarespot Rockfish 0.839 0.002 No 0.982 0.000 No
Starry Rockfish 0.661 0.009 No 0.817 0.002 No

p r2 Direction p D Direction
Blackeye Goby 0.947 0.000 No 0.994 0.048 No
Blue Rockfish 0.057 0.155 No 0.807 0.205 No
Painted Greenling 0.033 0.191 Positive 0.998 0.145 No
Pygmy Rockfish

Shallow 0.994 0.000 No < 0.001 0.749 Positive
Deep 0.136 0.098 No < 0.001 0.147 Positive

Rosy Rockfish 0.243 0.061 No 1.000 0.030 No
Squarespot Rockfish 0.118 0.107 No 0.347 0.157 No
Starry Rockfish 0.927 0.417 No 0.996 0.167 No

Mean Length (cm) Length Distribution

Density (fish/10m2) Biomass (g/cm/10m2)
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Fig. 6  Comparison of assemblage biological response variables (density and species
richness) with respect to distance from rocky bank patch edge near Point Lobos.  The
results are of the density (a) and species richness (b).  If the assemblage index was
significantly correlated with depth, the analysis was run with binned data.  Gray denotes
the edge zone and black denotes the interior zone.  Standard error is plotted as vertical
bars.  P-values are included in the legends

Table 4  Assemblage biological response variables (density, biomass, richness, evenness,
and heterogeneity) with respect to distance from rocky bank patch edge near Point Lobos.
If the assemblage index was significantly correlated with depth, the analysis was run with
binned data.  Statistically significant relationships are in bold

p df F-ratio Direction p df F-ratio Direction
Density (fish/10m2) 0.627 2 0.242 No 0.099 2 3.000 No
Biomass (g/cm/10m2) 0.463 2 0.555 No 0.036 2 5.058 Edge
Richness < 0.001 2 14.904 Edge
Evenness 0.008 2 8.484 Edge 0.026 2 5.786 Edge
Heterogeneity 0.027 2 5.584 Edge 0.007 2 9.043 Edge

Shallow or Pooled Deep
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The number of observed species was significantly greater in the edge than the

interior zones near Point Lobos (p < 0.001; Fig. 6b).  Similarly, evenness was

significantly greater in the edge than the interior zones in both shallow (p = 0.008) and

deep (p = 0.026) sections near Point Lobos (Table 4), meaning there were fewer

dominant species in the assemblage at the edge of rocky bank patches than in the interior.

Therefore, heterogeneity also was significantly greater in the edge than the interior zones

across the depth range (p = 0.008, p = 0.026; Table 4).  The species composition between

the edge and interior zones in shallow patches was 0.713 similar, but only 0.424 similar

in deep patches (Fig. 7).  This indicates a difference in edge effects of assemblage

diversity between the shallow and deep patches similar to those observed in the density

and biomass results.
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Fig. 7  Species composition of the seven most abundant species by depth category and
proximity to edge near Point Lobos.  The assemblage composition in proportional
abundance (a) and the observed abundance (b) are reported.  The unidentified fishes,
those not identified to the species level, and the 51 less-abundant species (whose
abundance was less than 1% of the total abundance) are pooled into the “other” category.
Depth classifications were defined as shallow (< 55 m) and deep (> 65 m)

a
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Patch Shape (P:A Ratio).  Neither the density nor biomass of all fishes combined was

significantly correlated with the P:A ratio (p = 0.559 and p = 0.192 respectively; Table 5,

Fig. 8a).  However, there was a significant negative relationship between richness and

rocky bank patch shape (p = 0.012; Fig. 8b).  Fewer species were observed in rocky bank

patches with more complex boundaries.  In fact, rocky bank patch shape explained 25.4%

of the variability in richness in the nearshore fish assemblage.  However, there was no

significant relationship between assemblage evenness or heterogeneity and P:A ratio (p =

0.362, p = 0.742).

Fig. 8  Comparison of assemblage biological response variables (density and richness)
with respect to patch shape of rocky bank patches near Point Lobos.  Results are of the
density (a) and richness (b).  If the assemblage index was significantly correlated with
depth, the analysis was run against the residuals data.  Significant relationships are
denoted by a dotted regression line. P-values and r2 values are included in the legends
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Table 5  Assemblage biological response variables (density, biomass, richness, evenness,
and heterogeneity) with respect to patch shape of rocky bank patches near Point Lobos.
If the assemblage index was significantly correlated with depth, the analysis was run
against the residuals data.  Statistically significant relationships are in bold

Patch Size (Area).  Neither the density nor biomass of all fishes was significantly

correlated with rocky bank patch size (p = 0.483, p = 0.064; Fig. 9a, Table 6).  However,

there was a significant positive relationship between richness and area (p < 0.001; Fig.

9b).  In fact, rocky bank patch size explained 48.2% of the variability in species richness.

But there was no relationship between the dominance of species within the assemblage or

the overall diversity and area (p = 0.895, p = 0.082, Table 6).

Fig. 9  Comparison of assemblage biological response variables (density and richness)
with respect to patch size of rocky bank patches near Point Lobos.  Results are of the
density (a) and richness (b).  If the assemblage index was significantly correlated with
depth, the analysis was run against the residuals data.  Significant relationships are
denoted by a dotted regression line. P-values and r2 values are included in the legends

p r2 Direction
Density (fish/10m2) 0.559 0.016 No
Biomass (g/cm/10m2) 0.192 0.076 No
Richness 0.012 0.254 Negative
Evenness 0.362 0.038 No
Heterogeneity 0.742 0.005 No
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Table 6  Assemblage biological response variables (density, biomass, richness, evenness,
and heterogeneity) with respect to patch size of rocky bank patches near Point Lobos.  If
the assemblage index was significantly correlated with depth, the analysis was run
against the residuals data.  Statistically significant relationships are in bold

Species Group Analyses

Depth and Rugosity.  The density and length distribution of the four species groups

varied with respect to depth.  The density of large rockfishes, dwarf rockfishes, and other

benthic fishes significantly increased with increasing depth (p = 0.002, p < 0.001, p <

0.001 respectively; Table 3b, Appendix F).  Additionally, the length distribution of dwarf

rockfishes increased significantly with depth (p < 0.001).  These significant relationships

with depth for the density and length distributions of different species groups were

accounted for in subsequent analyses by using the regression residuals of depth and the

biological response variable for the appropriate species group (i.e., density of large

rockfishes, dwarf rockfishes, and other benthic fishes) and by binning the length

distribution data by depth categories for dwarf rockfishes.  There were no significant

relationships among the remaining species groups’ density or length distributions with

respect to depth, therefore subsequent analyses used the original data for these two

biological response variables.

p r2 Direction
Density (fish/10m2) 0.483 0.023 No
Biomass (g/cm/10m2) 0.064 0.147 No
Richness < 0.001 0.482 Positive
Evenness 0.895 0.001 No
Heterogeneity 0.082 0.131 No
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Although the assemblage indices did not correlate with rugosity, there were

significant relationships between rugosity and some of the species groups’ density and

length distributions (Table 3c, Appendix F).  For example, the density of other benthic

fishes was positively correlated with rugosity (p = 0.032).  In addition, the length

distribution of dwarf rockfishes significantly decreased with increasing rugosity (p =

0.004).  The density and length distribution for the other species groups did not

significantly vary with changes in rugosity; therefore, the original, or depth-adjusted, data

were used for further analyses with the remaining independent habitat variables.

Proximity to Edge.  As expected, positive edge effects were observed in some of the

assemblage indices investigated (e.g., diversity indices and biomass, see above).

Therefore, this study investigated if these trends of the assemblage structure could be

explained by patterns of the four species groups.  The relative abundance of each species

group was proportionally distributed between the edge and interior zones of rocky bank

patches.  This means that the observed abundance in the edge and interior zones did not

differ from the expected abundance based on the available area of the edge and interior

zones (Appendix G).  However, differences in densities were detected between the edge

and interior zones (Table 7). For example, the density of large rockfishes and other

benthic fishes were both significantly greater in the edge zone as compared to the interior

zones (p = 0.046, p = 0.013; Fig. 10a).  The densities of the dwarf rockfishes and large

non-rockfishes were not significantly different (p > 0.05) with respect to proximity to the

edge for either shallow or deep rocky bank patches.
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Table 7  Biological response variables (density and length distributions) of the species
groups with respect to distance from the rocky bank patch edge near Point Lobos.  The
results are for the density (a) and the length distributions (b).  If the species-group index
was significantly correlated with depth, the analysis was run with binned data.
Statistically significant relationships are in bold

The length distribution of dwarf rockfishes was significantly different between the

edge and interior zones.  In shallow rocky bank patches, longer dwarf rockfishes were

observed in the interior zone (p < 0.001; Fig. 10b).  Whereas in deep rocky bank patches,

dwarf rockfishes of longer lengths were observed in the edge zone rather than the interior

zone (p = 0.021; Fig. 10b).  There was no relationship among the length distribution of

large rockfishes, large non-rockfishes, or other benthic fishes and the proximity to the

edge for either shallow or deep rocky bank patches (Table 7).

a - Density (fish/10m2)
p df F-ratio Direction p df F-ratio Direction

large rockfishes 0.286 2 1.19 Edge 0.046 2 4.547 Edge
dwarf rockfishes 0.383 2 0.788 Core 0.550 2 0.369 Edge
large non-rockfishes 0.511 2 0.438 Edge
other benthic fishes 0.013 2 7.216 Edge 0.552 2 0.365 No

DeepShallow

b - Length Distribution p D Direction
large rockfishes 0.574 0.244 No
dwarf rockfishes < 0.001 0.787 Core

0.021 0.286 Edge
large non-rockfishes 0.574 0.244 No
other benthic fishes 0.964 0.167 No
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Fig. 10  Comparison of biological response variables (density and length distributions) of
species groups with respect to distance from the rocky bank patch edge near Point Lobos.
A is the density of large rockfishes and other benthic fishes; b is the length distributions
of dwarf rockfishes in shallow and deep rocky bank patches.  If the species-group index
was significantly correlated with depth, the analysis was run with binned data.  Gray
denotes the edge zone and black denotes the interior zone.  Asterisks indicate size classes
in which fish were observed in abundances too small to be observed on the relative
frequency histograms.  Standard error is plotted as vertical bars.  P-values are included in
the legends

Patch Shape (P:A Ratio).  Rocky bank patch shape displayed a significant correlation

with the number of species within the nearshore fish assemblage.  These results are

opposite of what the edge results for the assemblage demonstrated.  The relationship

between patch shape and the fish assemblage may be species-specific, and thus patterns

between the four species groups and patch shape were investigated.

*

  

*

*   *

*
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Similar to the assemblage results, there was no significant relationship between

the density of each species group and the P:A ratio (Table 8).  Whereas three of the

species groups were not significantly correlated with the P:A ratio, individuals of dwarf

rockfishes were longer in rocky bank patches with greater P:A ratios in both shallow and

deep rocky bank patches (p = 0.001 and p < 0.001 respectively; Table 8).  Additionally,

the goodness-of-fit results indicated that while the abundances of three of the four species

groups were proportionally distributed between rocky bank patches of greater and lesser

P:A ratios, the abundances of dwarf rockfishes were not evenly distributed between rocky

bank patches of different P:A ratios (Appendix G).  Instead, the observed abundance of

dwarf rockfishes was greater than expected in patches of greater P:A ratios based on the

available area in the rocky bank patches (x2 = 6.247, p = 0.012; Appendix G).

Table 8  Biological response variables (density and length distributions) of the species
groups with respect to patch shape of rocky bank patches near Point Lobos.  If the
species-group index was significantly correlated with depth, the analysis was run against
the residuals or the binned data.  Statistically significant relationships are in bold

Patch Size (Area).  To determine if the patterns of the assemblage with respect to patch

size were driven by species groups within the assemblage, the relationship of the density

and length distributions of the species groups was examined with respect to area.

p r2 Direction p D Direction
large rockfishes 0.923 0.000 No 0.681 0.220 Negative
dwarf rockfishes 0.130 0.101 No 0.001 0.346 Positive

< 0.001 0.214 Positive
large non-rockfishes 0.961 0.000 No 0.889 0.300 No
other benthic fishes 0.901 0.001 No 0.999 0.110 No

Density (fish/10m2) Length Distribution
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However, there was no significant relationship between the density of any species group

and patch area (Table 9).  Similar to the patch shape results, dwarf rockfishes was the

only species group in which a significant relationship between the length distribution and

patch area was observed.  Dwarf rockfishes were significantly longer in rocky bank

patches of greater area for both shallow and deep rocky bank patches (p = 0.001 and p <

0.001 respectively; Table 9).

Table 9  Biological response variables (density and length distributions) of the species
groups with respect to patch size of rocky bank patches near Point Lobos.  If the species-
group index was significantly correlated with depth, the analysis was run against the
residuals or the binned data.  Statistically significant relationships are in bold

The abundance of the different species groups varied between rocky bank patches

of lesser and greater area.  The abundances of two of the four species groups (dwarf

rockfishes and other benthic fishes) were not proportionally distributed between patches

of lesser and greater area.  Instead the observed abundances of dwarf rockfishes was

greater than expected in patches of lesser area (x2 = 12.914, p < 0.001), whereas the

observed abundance of other benthic fishes was greater in patches of greater area based

on the available area in the rocky bank patches (x2 = 6.465, p = 0.011; Appendix G).

This indicated that the size of a rocky bank patch affected the relative abundances of

these species groups.

p r2 Direction p D Direction
large rockfishes 0.398 0.033 No 0.990 0.131 No
dwarf rockfishes 0.053 0.159 Positive 0.001 0.351 Negative

< 0.001 0.222 Positive
large non-rockfishes 0.412 0.031 No 1.000 0.139 No
other benthic fishes 0.539 0.017 No 0.995 0.118 No

Density (fish/10m2) Length Distribution
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Species-Specific Analyses

Depth and Rugosity.  The density of all of the seven most abundant species varied with

respect to depth (Table 3d, Appendix F).  The density of Blackeye Goby (p = 0.006),

Blue Rockfish (p = 0.047), and Painted Greenling (p < 0.001) significantly decreased

with increasing depth, whereas the density of Pygmy (p < 0.001), Rosy (p = 0.008),

Squarespot (p = 0.001), and Starry Rockfish (p < 0.001) significantly increased with

increasing depth.  Patterns in fish biomass were the same as those observed for species-

specific density, except there was no significant difference in biomass of Blue Rockfish

with depth (Table 3d, Appendix F).  The biomass of Blackeye Goby (p = 0.022) and

Painted Greenling (p = 0.001) significantly decreased with increasing depth, whereas the

biomass of Pygmy (p = 0.001), Rosy (p = 0.001), Squarespot (p < 0.001), and Starry

Rockfish (p = 0.001) significantly increased with increasing depth.

As expected, the patterns in mean length for all seven species were the same as

those observed for biomass for each species (Table 3d, Appendix F).  The mean length of

Blackeye Goby (p = 0.045) and Painted Greenling (p < 0.001) significantly decreased

with increasing depth, whereas the mean length of Pygmy (p < 0.001), Rosy (p = 0.001),

Squarespot (p < 0.001), and Starry Rockfish (p = 0.024) significantly increased with

increasing depth.  Pygmy rockfish, however, was the only species whose length

frequency distribution significantly varied with depth (Table 3d, Appendix F).  Pygmy

Rockfish of longer size were observed in deeper rocky bank patches (p < 0.001).
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Whenever a biological response variable was significantly correlated with depth,

the data were either split into shallow and deep depth bins (length frequency distribution)

or the regression residuals of depth and the biological response variable (density,

biomass, and mean length) was used for the subsequent analyses.  When the species-

specific biological response variables did not significantly correlate with depth (e.g., Blue

Rockfish biomass) the original data was used to analyze patterns with respect to other

independent habitat variables.

Similar to the relationships between species groups and rugosity, there were

significant relationships between rugosity and biological response variables for some of

the seven most abundant species (Table 3e, Appendix F).  For example, the density of

Blue Rockfish was negatively correlated with rugosity (p = 0.023), whereas the density of

Painted Greenling was positively correlated (p = 0.014).  There was no significant

difference in the density of the remaining species with respect to rugosity.  There was a

significant increase in the biomass of both Painted Greenling (p = 0.013) and Pygmy

Rockfish (p = 0.024) with increasing rugosity (Table 3e, Appendix G), but no significant

relationship for biomass of the other five species.  Also, significant changes in the lengths

of Painted Greenling and Pygmy Rockfish were observed (Table 3e, Appendix F).  The

mean length of Painted Greenling was significantly longer in rocky bank patches with

greater rugosity (p = 0.033).  Although the mean length for Pygmy Rockfish was similar

with respect to rugosity, the length frequency distributions significantly differed in both

shallow and deep patches (p < 0.001, p < 0.001).
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Proximity to Edge.  Knowing that the species groups responded differently to the edge

and interior zones of rocky bank patches, whether the seven most abundant species also

varied with respect to the edge of a rocky bank patch was investigated.  Blackeye Goby,

which was not included in any of the species groups, was the only species whose density

and size correlated with the edge or interior zone (Table 10).  The density (p = 0.046) and

biomass (p = 0.001) of the Blackeye Goby were significantly greater in the edge zone

than the interior zone in deep patches (Fig. 11a-b).  The mean lengths of Blackeye Goby

(p = 0.021, p = 0.003; Fig. 11c) and Rosy Rockfish (p = 0.031, p = 0.005; Fig. 11e) were

significantly longer in the edge zone in both shallow and deep patches.  Additionally, the

mean lengths of Pygmy (p = 0.002; Fig. 11d), Squarespot (p = 0.003; Fig. 11f), and

Starry Rockfishes (p = 0.014; Fig. 11g) also were significantly longer in the edge zone of

the rocky bank patch, but only in deep patches.  There was no relationship among

density, biomass, mean length, or length frequency distributions for either Blue Rockfish

or Painted Greenling with respect to proximity to rocky bank patch edge (Table 10).
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Table 10  Biological response variables (density, biomass, mean length, and length
distributions) of the specific species with respect to distance from rocky bank patch edge
near Point Lobos.  The results are for density (a), biomass (b), mean length (c), and
length distributions (d).  If the species-group index was significantly correlated with
depth, the analysis was run against the residuals or binned data.  Statistically significant
relationships are in bold

a - Density (fish/10m2)
p df F-ratio Direction p df F-ratio Direction

Blackeye Goby 0.182 2 1.886 Edge 0.007 2 8.953 Edge
Blue Rockfish 0.827 2 0.049 Edge 0.312 2 1.076 Edge
Painted Greenling 0.074 2 3.492 Edge 0.543 2 0.382 Edge
Pygmy Rockfish 0.389 2 0.770 Core 0.188 2 1.860 Edge
Rosy Rockfish 0.913 2 0.012 No 0.063 2 3.889 Edge
Squarespot Rockfish 0.533 2 0.401 Core 0.600 2 0.283 Core
Starry Rockfish 0.627 2 0.242 No 0.099 2 3.000 Edge

Shallow Deep

b - Biomass (g/cm/10m2)
p df F-ratio Direction p df F-ratio Direction

Blackeye Goby 0.563 2 0.345 Edge 0.001 2 14.142 Edge
Blue Rockfish 0.553 2 0.358 Edge
Painted Greenling 0.238 2 1.466 Edge 0.515 2 0.440 Edge
Pygmy Rockfish 0.340 2 0.949 Core 0.093 2 3.129 Edge
Rosy Rockfish 0.594 2 0.291 No 0.116 2 2.703 Edge
Squarespot Rockfish 0.491 2 0.489 Core 0.191 2 1.831 Edge
Starry Rockfish 0.672 2 0.184 Core 0.307 2 1.098 Edge

Shallow Deep

c - Mean Length (cm)
p df F-ratio Direction p df F-ratio Direction

Blackeye Goby 0.021 2 6.073 Edge 0.003 2 11.015 Edge
Blue Rockfish 0.058 2 3.750 No
Painted Greenling 0.166 2 2.042 No 0.462 2 0.561 No
Pygmy Rockfish 0.337 2 0.961 No 0.002 2 13.146 Edge
Rosy Rockfish 0.031 2 5.245 Edge 0.005 2 10.143 Edge
Squarespot Rockfish 0.790 2 0.073 No 0.003 2 11.703 Edge
Starry Rockfish 0.833 2 0.045 No 0.014 2 7.298 Edge

Shallow Deep

d - Length Distribution
p D Direction p D Direction

Blackeye Goby 1.000 0.031 No
Blue Rockfish 1.000 0.125 No
Painted Greenling 1.000 0.045 No
Pygmy Rockfish 1.000 0.100 No 1.000 0.000 No
Rosy Rockfish 1.000 0.200 No
Squarespot Rockfish 1.000 0.171 No
Starry Rockfish 0.999 0.400 No

Shallow Deep
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Fig. 11  Comparison of biological response variables (density, biomass, and mean length)
of specific species with respect to distance from rocky bank patch edge near Point Lobos.
A is the density and b is the biomass of Blackeye Goby.  The mean length of Blackeye
Goby as well as Pygmy, Rosy, Squarespot, and Starry Rockfish (c) are also reported.  If
the species index was significantly correlated with depth, the analysis was run with
binned data.  Gray denotes the edge zone and black denotes the interior zone.  Standard
error is plotted as vertical bars.  P-values are included in the legends
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Patch Shape (P:A Ratio).  Results from the four species groups did not further explain the

relationship between assemblage biological response variables and patch shape.

However, significant patterns among species-specific biological response variables and

P:A ratio were observed.  These patterns, especially those observed in length frequency

distributions, could be driving the assemblage response of length frequencies to patch

shape.  For example, the length frequency distributions of Pygmy and Squarespot

Rockfish were significantly different between patches with lesser and greater P:A ratios,

respectively (p < 0.001, p = 0.045; Fig. 12a-b).  For both of these species, individuals in

patches with more complex shapes (greater P:A ratio) had longer mean lengths than

patches with less complex shapes (lesser P:A ratio).  The relationship between Pygmy

Rockfish and patch shape was only significant for deep patches because none were

observed in shallow patches of high P:A ratio near Point Lobos (Fig. 12a).  However, the

density, biomass, and mean length of Pygmy and Squarespot Rockfish did not vary

significantly with respect to patch shape (Table 11).  Additionally, none of the other five

species demonstrated significant patterns with respect to P:A ratio for density, biomass,

mean length, or length frequency distributions (Table 8).
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Fig. 12  Comparison of biological response variables (length distributions) of specific
species with respect to patch shape of rocky bank patches near Point Lobos.  Results are
for Pygmy (a) and Squarespot Rockfish (b).  If the species index was significantly
correlated with depth, the analysis was run with binned data.  Gray denotes the low
perimeter-to-area ratio category and black denotes the high perimeter-to-area ratio
category.  Asterisks indicate size classes in which fish were observed in abundances too
small to be observed on the relative frequency histograms.  P-values are included in the
legends; NA means that statistical tests were not possible due to lack of data in a category

      * *

*
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*
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*
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Table 11  Biological response variables (density, biomass, mean length, and length
distributions) of the specific species with respect to patch shape of rocky bank patches
near Point Lobos.  The results are for density, biomass, mean length, and length
distributions.  If the species-specific index was significantly correlated with depth, the
analysis was run against the residuals or with binned data.  Statistically significant
relationships are in bold; N/A denotes analyses that could not be tested due to insufficient
data

Patch Size (Area).  Similar to the species groups, there was no significant relationship

between the species-specific density and area (Table 12).  However, there was a positive

relationship between patch area and the biomass of Blue, Squarespot, and Starry Rockfish

(p = 0.041, p = 0.025, and p = 0.005, respectively; Fig. 13).  As the patch size increased,

the biomass of each of the observed species increased.  There was a significant

relationship between the patch area and mean length of Squarespot and Starry Rockfish

(p = 0.033, p = 0.002; Fig. 13).  Not only did the mean length of Squarespot Rockfish

p r2 Direction p r2 Direction
Blackeye Goby 0.414 0.031 No 0.471 0.024 No
Blue Rockfish 0.387 0.034 No 0.071 0.140 Negative
Painted Greenling 0.879 0.001 No 0.579 0.014 No
Pygmy Rockfish 0.591 0.013 No 0.341 0.041 No
Rosy Rockfish 0.160 0.088 No 0.118 0.107 No
Squarespot Rockfish 0.075 0.137 Negative 0.113 0.110 No
Starry Rockfish 0.734 0.005 No 0.097 0.120 No

p r2 Direction p D Direction
Blackeye Goby 0.621 0.011 No 1.000 0.009 No
Blue Rockfish 0.325 0.044 No 1.000 0.108 No
Painted Greenling 0.161 0.087 No 1.000 0.114 No
Pygmy Rockfish 0.672 0.008 No

Shallow N/A N/A N/A
Deep < 0.001 0.308 Positive

Rosy Rockfish 0.647 0.010 No 1.000 0.053 No
Squarespot Rockfish 0.503 0.021 No 0.035 0.273 Positive
Starry Rockfish 0.078 0.134 No 0.845 0.252 No

Density (fish/10m2) Biomass (g/cm/10m2)

Mean Length (cm) Length Distribution
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increase with patch size, but the length frequency distributions also were significantly

different between patches with longer fishes observed in higher frequencies in patches of

greater area (p = 0.027; Fig. 13).  The length frequency distribution of the Pygmy

Rockfish population also varied with respect to patch size (p < 0.001; Fig. 13).  For both

of these species, patches of greater area had increased proportions of longer individuals.

These patterns aligned with the positive relationship between length frequencies of the

dwarf rockfish species group and patch area.

Table 12  Biological response variables (density, biomass, mean length, and length
distributions) of the specific species with respect to patch size of rocky bank patches near
Point Lobos.  The results are for density, biomass, mean length, and length distributions.
If the species-specific index was significantly correlated with depth, the analysis was run
against the residuals or with binned data.  Statistically significant relationships are in
bold; N/A denotes analyses were not be tested due to insufficient data

p r2 Direction p r2 Direction
Blackeye Goby 0.306 0.048 No 0.678 0.008 No
Blue Rockfish 0.215 0.069 No 0.041 0.176 Positive
Painted Greenling 0.600 0.013 No 0.658 0.009 No
Pygmy Rockfish 0.221 0.067 Positive 0.308 0.047 Positive
Rosy Rockfish 0.299 0.049 No 0.364 0.038 No
Squarespot Rockfish 0.211 0.070 Positive 0.025 0.208 Positive
Starry Rockfish 0.176 0.082 Positive 0.005 0.309 Positive

p r2 Direction p D Direction
Blackeye Goby 0.716 0.006 No 0.812 0.073 No
Blue Rockfish 0.212 0.070 No 0.718 0.205 No
Painted Greenling 0.080 0.133 Positive 1.000 0.131 No
Pygmy Rockfish 0.721 0.006 No

Shallow N/A N/A N/A
Deep < 0.001 0.140 Positive

Rosy Rockfish 0.275 0.054 Positive 1.000 0.043 No
Squarespot Rockfish 0.033 0.191 Positive 0.033 0.232 Positive
Starry Rockfish 0.002 0.358 Positive 0.959 0.209 No

Density (fish/10m2) Biomass (g/cm/10m2)

Mean Length (cm) Length Distribution
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Fig. 13  Comparison of biological response variables (biomass, mean length, and length
distributions) of specific species with respect to patch size of rocky bank patches near
Point Lobos.  Results of biomass analyses are for Blue, Squarespot, and Starry Rockfish
(a), the mean length of Squarespot and Starry Rockfish (b), and the length distributions of
Pygmy and Squarespot Rockfish (c).  If the species index was significantly correlated
with depth, the analysis was run with the residuals or the binned data.  Gray denotes the
low area category and black denotes the high area category. Significant linear
relationships are denoted by a dotted regression line.  Standard error is plotted as vertical
bars.  Asterisks indicate size classes in which fish were observed in abundances too small
to be observed on the relative frequency histograms.  P-values, and where applicable r2

values, are included in the legends

Regional Comparisons

The similarity of the species composition between Point Lobos and Point Sur was

0.638 (Fig. 14).  Although there were regional differences in the specific species present

and their proportional abundances, the assemblage composition within central California

was similar between these two regions.  For most of the assemblage indices, the

significance and direction of the relationship between the biological response variables, at

the assemblage level, and the independent habitat variables were similar between regions.

However, regional differences with respect to edge proximity and patch shape were

observed.

*         *
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Fig. 14  Species composition of the seven most abundant species for shallow rocky bank
patches near Point Lobos and Point Sur.  The assemblage composition in proportional
abundance (a) and the observed abundance (b) are reported.  The unidentified fishes,
those not identified to the species level, and the 51 less-abundant species (whose
abundance was less than 1% of the total abundance) are pooled into the “other” category

a
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Proximity to Edge.  The density of all fishes was not significantly different between the

edge and interior zones near Point Lobos (Tables 4 and 13) or near Point Sur (p = 0.753;

Fig. 15a).  Mean biomass was not significantly different between the edge and interior

zones near Point Lobos (p = 0.463; Fig. 15a) or near Point Sur (p = 0.958; Fig. 15b).

Similar to the density and biomass results, patterns in the species richness in the

nearshore fish assemblage near Point Lobos and Point Sur were not significantly different

between the edge and interior zones (p = 0.061 and p = 0.888; Table 13).  However, the

observed patterns of the remaining assemblage diversity indices varied between near

Point Sur and those observed near Point Lobos.  The evenness and heterogeneity near

Point Lobos were significantly greater in the edge zone than the interior near Point Lobos

(Table 4).  Near Point Sur there was no significant difference in evenness (p = 0.155) or

heterogeneity (p = 0.465) between the edge and interior zones of the rocky bank patches.
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Fig. 15  Comparison of assemblage biological response variables (density and biomass)
with respect to distance from rocky bank patch edge near Point Lobos and Point Sur.  The
results include the assemblage density (a) and biomass (b) between the edge and interior
zones of shallow rocky bank patches near Point Lobos and Point Sur.  Gray denotes the
edge zone and black denotes the interior zone.  Standard error is plotted as vertical bars.
P-values are included in the legends
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Table 13  Assemblage biological response variables (density, biomass, richness,
evenness, and heterogeneity) of shallow rocky bank patches near Point Lobos and Point
Sur.  The results are with respect to proximity to edge (a), patch shape (b), and patch size
(c).  If the assemblage index was significantly correlated with depth, the analysis was run
against the residuals.  Statistically significant relationships are in bold

Patch Shape (P:A Ratio).  The density and biomass of the nearshore fish assemblage did

not vary with respect to the P:A ratio near Point Lobos (p = 0.939, p = 0.616; Table 13)

or near Point Sur (p = 0.441, p = 0.185; Fig. 16a-b).  The significant decrease in the

number of species observed in rocky bank patches of greater shape complexity near Point

Lobos (Table 12) was not observed in the number of species with respect to patch shape

near Point Sur (p = 0.169; Table 13).  The remaining assemblage diversity indices

c 
p r2 Direction p r2 Direction

Density (fish/10m2) 0.674 0.017 No 0.533 0.036 No
Biomass (g/cm/10m2) 0.206 0.141 No 0.214 0.137 No
Richness 0.012 0.447 Positive 0.070 0.268 No
Evenness 0.860 0.003 No 0.554 0.033 No
Heterogeneity 0.088 0.242 No 0.793 0.007 No

Point Lobos Point Sur

b 
p r2 Direction p r2 Direction

Density (fish/10m2) 0.393 0.001 No 0.441 0.055 No
Biomass (g/cm/10m2) 0.616 0.024 No 0.185 0.154 No
Richness 0.024 0.385 Negative 0.169 0.165 No
Evenness 0.981 < 0.001 No 0.169 0.165 No
Heterogeneity 0.080 0.252 No 0.848 0.004 No

Point Lobos Point Sur

a 
p df F-ratio Direction p df F-ratio Direction

Density (fish/10m2) 0.989 2 0.000 No 0.753 2 0.101 No
Biomass (g/cm/10m2) 0.463 2 0.555 No 0.958 2 0.003 No
Richness 0.061 2 3.865 No 0.888 2 0.020 No
Evenness 0.008 2 8.484 Edge 0.155 2 2.156 No
Heterogeneity 0.027 2 5.584 Edge 0.465 2 0.552 No

Point Lobos Point Sur
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(evenness and heterogeneity) were not statistically related to patch shape either near Point

Lobos or Point Sur (Table 13).  However, the range of P:A ratios of the rocky bank

patches near Point Sur was smaller than near Point Lobos (Appendix D).

Fig. 16  Comparison of assemblage biological response variables (density and biomass)
with respect to patch shape of rocky bank patches near Point Lobos and Point Sur.
Results include the assemblage density (a) and biomass (b).  Standard error is plotted as
vertical bars.  P-values and r2 values are included in the legends

Patch Size (Area).  Similar to the relationships among the biological response variables

and patch shape, the density and biomass of fishes did not vary significantly with patch

area.  Similar to the patch shape comparisons, there was no difference in the density or

biomass of the assemblage with respect to patch size near Point Lobos (p = 0.674, p =

0.206) or near Point Sur (p = 0.533, p = 0.214; Fig. 17a-b, Table 13).  Additionally, a
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significant relationship between species richness and patch size was only observed near

Point Lobos (Table 13).  Both near Point Lobos and Point Sur there were no significant

relationships among evenness or heterogeneity and patch size (Table 13).  The range of

areas of the rocky bank patches near Point Sur was similar to near Point Lobos

(Appendix D).

Fig. 17  Comparison of assemblage biological response variables (density and biomass)
with respect to patch size of rocky bank patches near Point Lobos and Point Sur.  Results
include the assemblage density (a) and biomass (b).  Standard error is plotted as vertical
bars.  P-values and r2 values are included in the legends
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Species-Area Relationships

As the rocky bank patch area increased, the number of species increased

proportionally.  The results of Resampling Statistics indicated that the cumulative number

of species observed and the area of fish transects surveyed were similar to that which the

species-area relationship equation (S = c*Az) would predict (c = 159.0, z = 0.3; Fig. 18a).

Similarly, results of resampling the cumulative number of species observed and the rocky

bank patch area also were similar to those predicted by the species-area relationship

equation (c = 57.87, z = 0.25; Fig. 18b).  Additionally the cumulative abundance of the

assemblage showed a positive relationship with cumulative area surveyed (Fig. 19a) and

rocky bank patch area (Fig. 19b).  These results are consistent with the previously

mentioned lack of a significant relationship between assemblage density and area, as

density is an area-standardized measure of abundance.  These results demonstrate that the

richness and abundance increases with area within the dataset of this study.
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Fig. 18  Cumulative species richness with cumulative area surveyed and patch area near
Point Lobos.  Results of the resampling analyses of the cumulative species richness with
respect to cumulative area surveyed (a) and cumulative patch area (b).  The weight of the
dot color denotes the frequency of the value in the resampling results.  The predicted
species-area relationship is superimposed in red.  The dotted lines denote 90% of the total
number of species and corresponding area surveyed or patch area
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Fig. 19  Cumulative assemblage abundance with cumulative area surveyed and patch area
near Point Lobos.  Results of the resampling analyses of the cumulative assemblage
abundance with respect to cumulative area surveyed (a) and cumulative patch area (b).
The weight of the dot color denotes the frequency of the value in the resampling results.
The linear relationship of the results is superimposed in red.  P-values and r2 values are
included in the legends
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Discussion

Does the abundance, diversity, or length frequency of fishes increase with depth?

Previous studies of fish-habitat relationships along the west coast of the United

States have highlighted the importance of depth as a factor that explains the presence and

abundance of specific species and thus the assemblage composition.  My results indicated

that there are species-specific differences with respect to depth, yet overall assemblage

abundance and diversity increase with increasing depth.  This means that more fishes and

higher species counts were observed at greater depths.  Faunal breaks along the

California coast are largely defined by latitude and depth (as reviewed by Allen et al.

2006).  This study was limited to the central California coast, and thus there was no effect

of latitude on the species assemblage.  For central and northern California, the peak fish

abundance usually occurs in deep reefs and on the continental slope (Allen et al. 2006),

which occur at the deepest limit of the present study region.  Therefore, even though this

study was constrained to the mid-depth rocky habitat zone (30 – 100 m), significant

relationships between assemblage density and biomass with depth were observed.  The

response of each of the four species groups to depth aligned with previous findings

(Miller and Lea 1976, Love et al. 2002, Allen et al. 2006).

Patterns in the species-specific density with respect to depth also aligned with

previous research.  For example, Blue Rockfish often are found in sub-tidal reefs and

rocky habitats in less than 90 m depth (Love et al. 2002).  In this study, Blue Rockfish
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were more abundant in shallow rocky bank patches, and density decreased with depth

towards 100 m, which is outside of the habitable depth of the species.  In contrast, Starry

Rockfish are typically found between 60 and 150 m of water (Love et al. 2002) and thus

would, on average, peak in abundance around 100 m of depth.  In this study, the density

of Starry Rockfish significantly increased with depth toward the 100 m depth range of the

study.

Assemblage composition naturally varies with depth due to individual species-

specific depth ranges.  As with fish abundance, there is a positive relationship between

richness and depth across the continental slope (Allen et al. 2006).  Therefore, it was

expected to observe a positive relationship between the number of species and depth near

Point Lobos.  However, this kind of relationship was not observed.  Perhaps the depth

range of this study was not wide enough to observe the depth ranges of highest species

richness, or the topography of Point Lobos may limit the overlap of species depth ranges.

Most of the deep rocky bank patches within this study were located at the top of canyon

walls.  Rather than a gradual decrease in depth that fosters species overlap, the canyon

walls might act as a barrier to the overlap of species or our ability to observe the overlap

from the submersible.

Fish assemblage diversity often increases with increasing depth (Chittaro et al.

2010).  However, this pattern was not observed within the mid-depth rocky habitat zone,

which again could be due to the narrow depth range of this study.  Evenness decreased

with depth, meaning that a few species were more dominant in the deeper rocky bank

patches.  For a similar reason, the overall diversity of the assemblage decreased with
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depth.  The difference in these results versus previous studies investigating the

assemblage structure across the continental shelf could be because the depth range in this

study was shallower than in previous studies of the nearshore fish assemblage.

The relationships among mean length and depth observed for the specific species

supported previous findings.  The increase in mean lengths of the dwarf rockfishes

(Pygmy, Rosy, and Squarespot Rockfish) with depth is consistent with observations of

younger rockfishes inhabiting shallow waters and moving to deeper habitats with age

(Love et al. 2002).  These ontogenetic shifts with depth are well documented for species

within the large rockfish and non-rockfish species group:  Yelloweye Rockfish (S.

ruberrimus, Cramer 1895; Richards 1986, O’Connell and Carlile 1993), Bocaccio (S.

paucispinus, Ayres 1854; Allen et al. 2006), and Lingcod (Ophiodon elongatus, Girard

1854; Fields 2005).  However, the length distributions of these species groups in this

study did not vary with respect to depth.  This may be due to the 100 m depth restriction.

The submersible transects analyzed covered the shallower portions of the depth range of

these species and most likely the smaller lengths of the individuals for many of these

species.  For example, Love et al. (2002) reported that Yelloweye Rockfish were most

abundant between 90 and 180 m and Bocaccio between 50 and 250 m; thus, it was

expected to see individuals of shorter lengths at the shallow end of their range, which was

the deeper portion of the depth range in the present study.

The increase in the density of the assemblage and the decrease in the diversity

with respect to depth support the previous conclusions that habitat depth strongly

influences assemblage composition in California (Allen et al. 2006).  Although a large
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portion of the variability (22 to 42%) is explained by depth, this study was interested in

what other variables could be influencing the variation in the nearshore fish assemblage.

An additional factor that previous researchers have correlated with species composition

of the fish assemblage is the complexity of the fine-scale habitat.

Does the abundance, diversity, or length frequency of fishes increase with rugosity?

Previous investigations of the nearshore fish assemblage have illustrated a

relationship between fine-scale habitat types and the abundance and presence of specific

species within the mid-depth rocky habitat zone (Ralston et al. 1986, Pearcy et al. 1989,

Stein et al. 1992, Yoklavich et al. 2000, Anderson and Yoklavich 2007).  Gratwicke and

Speight (2005) used rugosity as a quantifiable metric to investigate the relationship

between fine-scale habitat types and the fish assemblage.  As a habitat type becomes

more complex, the surface area of the seafloor increases and provides increased refuge

from predators (Hixon and Beets 1989, Irlandi et al. 1995, Wilson et al. 2008), increased

foraging opportunities (García-Charton et al. 2004), and increased niche partitioning

(MacArthur and Levins 1964).  Therefore, this study expected to observe a positive

relationship among all of the biological response variables and rugosity.

The importance of fine-scale habitat type complexity is evident in the

relationships this study observed among length frequency distributions of the species

groups and specific species and rugosity.  These results indicated that the length

distribution of fishes was skewed towards shorter individuals in less complex habitat and
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longer individuals in more complex habitat.  Previous studies have shown that Atlantic

Cod (Gadus marhua, Linnaeus 1758) and Nassau Grouper (Epinephelus striatus, Bloch

1792) demonstrate ontogenetic shifts in the complexity of habitats they use (Gotceitas

and Brown 1993, Gotceitas et al. 1995, Dahlgren and Eggleston 2000).  Additionally,

work with Atlantic Cod demonstrated that juveniles and adults rely on different defense

mechanisms within soft sediment and complex rocky habitats, which could explain the

pattern of longer individuals using more complex habitat (Gregory and Anderson 1997).

However, there was no relationship among the other assemblage indices (density,

biomass, or species composition) and rugosity.  Therefore, fine-scale variation of the

habitat does not appear to be a major factor affecting assemblage structure across the

landscape of this study area.

Although rugosity was not correlated with many of the assemblage indices,

significant relationships among density and length distributions of fishes were observed

in the four species groups and species-specific analyses.  In other studies, species within

the other benthic species group have shown a positive correlation with rugosity

(Yoklavich et al. 2002).  Whereas the density dwarf rockfishes did not correlate with

rugosity in this study, a previous study reported a positive association of abundance with

rock, boulder, and cobble substrata (O’Farrell et al. 2009).  Additionally the abundance of

Blue Rockfish, which are semi-pelagic but have been previously reported to associate

with rock pinnacles (Jorgensen et al. 2006), negatively correlated with rugosity.

Although these results seem to counter those of Jorgensen et al. (2006), no pinnacles

were included in this study.
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The significant relationships among the species groups and specific species with

respect to rugosity support previous findings that rugosity is an important factor in

species-specific responses to habitats.  When there was a significant relationship, rugosity

only explained 19% to 24% of the variability.  However, these results also suggest that

the assemblage as a whole is not strongly affected by rugosity across a landscape scale.

Therefore, less than 50% of the variability in assemblage structure was explained by

depth and rugosity in this study.  Other observable factors, such as the independent

habitat variables of the rocky bank patches, may account for the remaining variation in

the nearshore fish assemblage.

Does the abundance, diversity, or length frequency of fishes increase with respect to the

proximity of the edge of a rocky bank patch as would be predicted by the terrestrial

landscape paradigm?

There is no standard ecological method for choosing the width of an edge zone.

Previous landscape-scale investigations have defined the edge zone based upon the

highest observed density (Peterson and Turner 1994), by using what other studies have

used (Bologna and Heck 1999, Tanner 2003), or by slightly increasing the distance used

by other studies (Jelbart et al. 2006).  Therefore, designing an objective method for

defining the edge zone for the rocky bank patches was a priority of this study.  This study

investigated both species-specific and assemblage responses to the edge, and thus the

movement patterns of individual species could not be used to define the edge zone, as
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home range varies with body size (Kramer and Chapman 1999) and across species

(NOAA 2004).  Using the edge-width distance from previous studies would have enabled

comparisons of the results from this study with those studies.  However, most marine

studies have used a distance that was defined by the distribution of epifaunal

invertebrates in seagrass meadows (Peterson and Turner 1994, Bell et al. 1995).

Therefore, assemblage density and the richness per unit area surveyed was used, two

metrics that had been used previously to define the edge zone width, to look objectively

for break points in the data.  Both of these variables suggested a similar edge width zone.

This width resulted in a similar percentage of the patch area being defined as the edge as

compared to a previous seagrass study of fishes (Jelbart et al. 2006).  In addition, the

edge width used was at a similar scale to the estimated horizontal foraging range of

Señorita (Oxyjulis californica, Günther 1861), another temperate fish (Bernstein and Jung

1979).

Terrestrial studies have reported increases in density and biomass of individuals

along the edges of habitat patches within a landscape (Lidicker 1999, Bolger et al. 2000,

Golden and Crist 2000).  However, to date, marine studies have shown conflicting results

with respect to the density of organisms at a patch edge.  Changes in density at the edge

of a habitat patch could be due to niche overlap of species at the edge or predator

distribution and movements.  For example, some researchers have observed an increase

in total density of species due to a decrease in susceptibility to predators along edges

(Gotceitas and Brown 1993, Fraser et al. 1995, Gotceitas et al. 1995, Gregory and

Anderson 1997) and attributed this to decreased foraging efficiency of predators along
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edges (Hovel and Lipcius 2001).  Other studies reported an increase in access to prey by

predators along edge boundaries (Irlandi 1994), and a subsequent increase in predator

density (Holmes and Laundré 2006) or preferential use of the edge area by predators

(Carfagno et al. 2006, Heithaus et al. 2006, Papastamatiou et al. 2009).

In the rocky bank patches of this study, there was no difference in the density or

biomass of the assemblage between the edge and interior zones of shallow rocky bank

patches.  However, there was an increase in both density and biomass at the edge in deep

rocky bank patches.  The increase in density and biomass of fishes at the edge could be

due to direct selection of the edge zones by fishes or an indirect correlation of density

with the edge zone, as explained by Wiens (1976).  Regardless of whether the presence of

fishes of the nearshore fish assemblage in close proximity to the rocky bank patch

boundary is due to direct or indirect factors, these results indicate that edge effects do

occur in deeper waters of the ocean than had previously been studied.  Additionally, these

results further document edge effects related to fish assemblage structure in temperate

non-vegetative habitats.

Patterns with respect to the distance from a rocky patch boundary are not static,

but rather may be influenced or driven by fine-scale movement patterns of individual

fish.  Lowe and Bray (2006) and Freiwald (2010) both synthesized current literature on

movement patterns of fishes, concluding that the timing of movements and activity

patterns vary among fish species and individuals within a species.  Multiple biological

(e.g., competition, prey or predator presence) and environmental (e.g., habitat quality,

lunar phase, water temperature) variables have been correlated with movement patterns



76

of fish.  Whereas we are gaining an increased understanding of the size of home ranges,

the total area used over time; unfortunately, little work to date has focused on the fine-

scale daily movement patterns of fish.  It is at this scale, of hourly or daily movements, in

which the patterns with respect to the distance to rocky bank patch boundaries would be

observed.  Therefore, future work should focus on investigating fine-scale movement

patterns with respect to landscape-scale habitat characteristics.

The lack of edge effects related to density or biomass in shallow patches suggests

that different processes may affect the assemblage structure in shallow rocky bank

patches as compared to seagrass meadows or terrestrial habitats.  Positive edge effects

related to eelgrass assemblage density have been attributed to increases in foraging

opportunities (Irlandi et al. 1999, Hovel and Lipcius 2001).  Patterns of increased density

at the edge also have been linked with the increase in food availability at the seagrass

edge as the blades dampen the currents (Bologna and Heck 2002).  In this study of

shallow rocky bank patches, the distribution of dwarf rockfishes, the prey species for

larger fishes in the nearshore assemblage, was higher in the interior.  Several reasons

could explain the increase in prey items in the interior of rocky bank patches.  First, prey

species may seek refuge from predators in the interior of patches.  Irlandi et al. (1999)

reported that predation rates decreased with increasing distance from the edge zone.

Second, if food is not a limiting resource for prey species because it is advected across all

portions of the rocky bank patch, rather than only available at the edge zone, then there

may be more food items for the prey species within the interior of the patch.  Third,

further research is needed to determine if predatory species have greater foraging success
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at the edges and thus the density of prey species is reduced at the edges of rocky bank

patches.

The increase in the density of predatory species, such as large rockfishes, at the

edge may be due to the presence of prey species in the adjacent habitats.  For other

species there was no difference in the density of individuals between the edge and interior

as would be expected from previous research.  For example, Jorgensen et al. (2006)

observed Blue Rockfish most often 10 – 20 m from the kelp forest edge.  In this study

there was no edge effect related to Blue Rockfish, possibly because they occurred more

often in the buffer (12 – 36 m from the rocky bank patch boundary).

Similar to terrestrial studies (Yahner 1988), there was a positive edge effect

related to diversity of the nearshore fish assemblage throughout the depth range.  The

increase in diversity could be indicative of species overlap between rocky habitat fishes

and soft bottom fishes occurring at the edge of rocky bank patches in the mid-depth rocky

habitat, as seen in other systems (Ward et al. 1999, Baker et al. 2002).  Indeed, species

that associate with soft sediment, e.g., flat fishes, only were observed in the edge zones of

rocky bank patches.  In addition to these overlapping species, there also were species that

occurred only in the edge or interior zones of the rocky bank patch (Appendix H).  For

instance, Big Skate (Raja binoculata, Girard 1855), Spotted Scorpionfish (Scorpaena

guttata, Bloch 1789), and Yelloweye Rockfish4 were present only in the edge zones near

Point Lobos.  Whereas, Bank (S.  rufus, Eigenmann and Eigenmann 1890), Rosethorn (S.

                                                  
4 It is important to note that the sample size for Yelloweye Rockfish in the edge zone was very small.
Many of the Yelloweye Rockfish were observed in the buffer (12 – 36 m from the rocky bank patch
boundary).
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helvomaculatus, Ayres 1859), and Shortbelly (S.  jordani, Gilbert 1896) Rockfish were

observed only in the interior zones.  Furthermore, there were fewer dominant species in

the edge zone in both shallow and deep rocky bank patches than in the interior zone.  The

increase in species evenness further suggests that there is an overlap of species from both

rocky and soft bottom habitats.  An increase in the diversity of the assemblage at the edge

of a rocky bank patch results from both an increase in the number of species and a

decrease in the dominance by individual species within the assemblage.

In terrestrial studies, researchers have observed an increase in the size of

individuals along the edges due to a higher proportion of large predators (Woodroffe and

Ginsberg 1998) or avoidance by smaller organisms of the edge zones (Foster and Gaines

1991).  The higher density of a large predatory species group (large rockfishes) suggests

that there are a higher proportion of large predators in the assemblage at the edge.

The similarity in density between edge and interior zones in shallow rocky bank

patches indicates that different processes could be driving the increase in large fishes at

the edge in different depths of rocky bank patches than those observed in shallow

seagrass meadows.  There could be increased competition from other large fishes along

the edges, which potentially explains the lack of a pattern observed in shallow patches.

The positive edge effect in deep patches could indicate that large predatory fish may

travel farther to forage off of the rocky bank patch.  For example, studies of tropical

predatory fishes have observed off-reef foraging patterns of fishes that seek refuge in the

reef (Frazer and Lindberg 1994, Posey and Ambrose 1994).  Therefore, the observed

positive edge effect could be due to their feeding habits off of the rocky habitat, not due
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to the food availablity at the edge of the rocky bank patch.  Conversely, the increase in

large predatory species at the edge could be because aggregations of prey items, such as

zooplankton, micronekton, and small fish, often occur near abrupt topographic changes,

like a rocky bank patch edge (see review by Genin 2004).  Additionally, many rocky

habitats in the central California coast have ledges around the edges of the habitat.  These

features could indicate more efficient shelter opportunities at the edges of rocky bank

patches for larger fishes.

The density, diversity, and length results this study observed generally support

previous landscape-scale studies in both terrestrial and marine systems.  However, it

seems that the ecological processes that are driving the edge effects differ across

ecosystems.  Similar to what Fagan et al. (1999) suggested, this study demonstrates a

need for further work to focus on quantifying the key processes, e.g., food availability or

refuge, which shape the nearshore fish assemblage across a landscape.

These results also have important implications for how scientists survey the

nearshore fish assemblage.  To increase the accuracy of our assemblage characterization

it is important to conduct surveys of the fish assemblage throughout both the edge and

interior zones of the rocky bank patches.  If surveys only occur in the interior or at the

edge of the rocky bank patch then those surveys would produce biased estimates of the

fish assemblage.  Starr et al. (1996) highlighted a potential bias of using a submersible

when quantifying the nearshore fish assemblage.  They reported greater abundances of

fishes, especially semi-pelagic and pelagic fishes, more than 2 m off seafloor, outside the

scope of the submersible surveys.  These results indicate that the observed differences
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between the edge and interior zones of rocky bank patches within this study may be

stronger for other portions of the nearshore fish assemblage than we are able to survey

using a submersible.

Does the abundance, diversity, or length frequency of fishes increase with respect to the

shape of a rocky bank patch?

The presence of edge effects related to the fish assemblage structure in sub-tidal

rocky habitats indicates that the shape of the rocky bank patch should also affect the

distribution and abundance of fishes.  As the rocky bank patch boundary gets more

complex, the proportion of the rocky bank patch that is within the edge zone increases.

Due to the difficulty in and subjectivity of defining the edge width for a habitat patch and

because it is easier to assess the shape of a rocky bank patch when developing a sampling

design, it would be advantageous to use the shape of a rocky bank patch to account for

the observed edge effects in future studies to assess the nearshore fish assemblage.

Unfortunately, the shape of rocky bank patches did not significantly correlate with the

density, diversity, or lengths of species within the fish assemblage in the rocky bank

patches in this study.  Therefore, patch shape is not a predictive indicator for most

biological response variables.

Although the patch shape of rocky banks did explain roughly one quarter of the

variability in species richness, it was not in the direction that was expected.  The edge

analyses revealed an increase in richness at the edge zones.  Therefore, it was anticipated
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that as the shape of the rocky bank patch got more complex there also would be an

increase in the number of species because there would be an increase in the amount of

patch that occurred in the edge zone.  However, fewer species were observed as the rocky

bank patch shape increased in complexity.

The seemingly contradictory results of the rocky bank patch shape analyses may

indicate that the patterns of foraging or dispersal are different on rocky banks than in

terrestrial habitats.  In terrestrial studies, researchers have correlated the shape of habitat

patches with increased dispersal and foraging of organisms (as summarized by Forman

and Godron 1986, Gutzwiller and Anderson 1992).  In the ocean, currents advect food

particles through the water column and thus organisms forage differently in the oceans

(Cowen and Sponaugle 2009).  Whereas habitat patch shape can be a predictor of the

distribution of species on land, it may not be relevant in the marine environment because

underlying food dispersal processes are different.

Alternatively, the range of P:A ratios within this study may not be wide enough to

detect the influence of rocky bank patch shape on the biological response variables.

Although the P:A ratio values of the rocky bank patches were 1.4 to 2.5 times more

complex than a perfect circle of similar area, perhaps the effect of boundary complexity

does not influence species distribution until it is of greater complexity.  In addition, P:A

ratio and area were highly correlated, and therefore rocky bank patch size might be more

of a factor driving assemblage structure.  Previous marine studies also did not observe

significant relationships among the biological response variables and the shape of

seagrass patches, but reported that biological response variables were correlated with
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seagrass patch size (Jelbart et al. 2006).  This could also explain why the signal of edge

effects was not observed in all biological response variables of the assemblage for the

rocky bank patch shape analyses.

Rocky bank patch shape did correlate with the number of species and the

proportion of large individuals observed throughout rocky bank patches.  In addition, the

species-specific analyses illustrated that the complexity of the rocky bank patch boundary

can be a predictor of the size composition, but not other biological response variables at

the species group or species level.  The species-specific relationships with rocky bank

patch shape did not match results from the edge analyses either.  For example, even

though there were higher densities of Blackeye Goby observed at the edge of rocky bank

patches, there was no relationship between this species and rocky bank patch shape.  This

could be because the home range of Blackeye Goby is small in comparison to other

species and thus it is almost always at the edge of the microhabitat it associates with.

These results have important implications for the design of surveys to assess the

diversity of the nearshore fish assemblage.  Because the length frequencies of fishes and

the number of species change in response to the complexity of the boundary of rocky

bank patches, it is necessary to stratify a sampling scheme throughout a range of rocky

bank patch shapes.  Surveying within multiple rocky bank patch shapes would increase

the accuracy of the assemblage structure estimates for the region, thus the shape of rocky

bank patches should be considered when developing the sampling design for a survey.
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Does the abundance, diversity, or length frequency of fishes increase with respect to the

size a rocky bank patch?

Previous marine landscape studies determined that the size of habitat patches was

a greater factor in explaining assemblage structure than the shape of the habitat patch

(Eggleston et al. 1998, Bolger et al. 2000, Jelbart et al. 2006).  The results from this study

support these conclusions.  Whereas rocky bank patch shape explained roughly a quarter

of the variability in the number of species observed, the size of the rocky bank patch

explained 48%.  Therefore, the size of a rocky bank patch was a more robust predictor of

species richness in the nearshore fish assemblage than rocky bank patch shape.  The

number of species within the assemblage strongly correlated with area, as would be

expected from species-area relationship curves.  Additionally, the observed positive

relationship between species richness and rocky bank patch size aligns with previous

marine and terrestrial studies (Winemiller and Leslie 1992, Elliot et al. 1998, Heegaard et

al. 2007).

Rocky bank patch size did not correlate with species density within the

assemblage.  Although there was a positive relationship between fish abundance and

rocky bank patch size, there was no significant relationship between density and rocky

bank patch size.  These results support the relationship between abundance, density, and

area as summarized by Risser (1995).  If abundance increases proportionally to the

increase in area of patches, there should be no change in density with increasing area, as

density is standardized to area (Risser 1995).   Additionally, Bender et al. (1998)
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suggested that using the total patch size rather than the area that species inhabit within the

patch could result in underestimates of density.  Future studies should investigate if

similar underestimates of the nearshore fish assemblage occur by conducting tracking

studies to quantify the proportion of the habitat used.

However, there were differences in the biomass and lengths of four of the species

investigated with respect to rocky bank patch size.  In fact, three rockfish species

demonstrated an increase in biomass with increasing area.  Therefore, individual species

responded uniquely to the area of rocky bank patches.  Sampling measures of the

assemblage need to account for such species-specific differences when generalizing about

patterns with respect to patch size across a landscape.

Similar to rocky bank patch shape, the size composition of the nearshore fish

assemblage varied with area at the species group and species-specific level.  Interestingly,

there was a significant increase in the proportion of individuals of longer lengths with

increasing rocky bank patch size, both for a species group and for individual species.

The increase in lengths of fishes could be due to ontogenetic shifts to larger rocky bank

patches with greater size due to an increase in home range requirements.  Larger fishes

often need a greater area to encounter enough prey to survive.  Larger individuals of

rocky habitat-specific species, such as Squarespot Rockfish, were observed in higher

proportions in rocky bank patches of greater area.  In addition, rocky bank patch size also

varied with other biological response variables for some but not all species.

The relationship between the size of patches and the number of species has

important sampling design implications.  To survey accurately the nearshore fish
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assemblage across a landscape, it is necessary to include a range of rocky bank patch

sizes, as the number of species does not increase linearly with an increase in area.

Additionally, to quantify the biomass of the assemblage or the range of sizes of fishes

throughout a landscape one would need to stratify the sampling design across rocky bank

patches of various areas.

Are patterns in the nearshore fish assemblage with respect to independent habitat

variables similar between regions of the central California coast?

The results from Point Lobos suggest that researchers need to account for

independent habitat variables when investigating the nearshore fish assemblage.  It is also

important to understand if these relationships between assemblage structure and the

landscape are specific to the Point Lobos area or if they can be generalized throughout

central California.  This study expected that the magnitude of the patterns would differ

among regions due to differences in region-specific characteristics, but that the direction

of the patterns would be similar.  If the observed patterns occur in multiple regions, these

results can be applied widely to current research projects collecting information for

fisheries management.

Results for the biological response variables at the assemblage level of nearshore

fishes were relatively similar between the two regions.  There was no difference in the

response of density between the two regions.  However, the increase in the biomass of

fishes in the edge zone was only observed near Point Lobos.  This difference between the
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two regions could be due to differences in their topography.  The topography of Point

Lobos is interspersed with canyon heads, whereas Point Sur is a large shelf (Fig. 1).

These differences could affect the advection and distribution of food items.  For example,

if stronger currents near Point Sur advect more food towards fishes, there could be less of

a need for larger individuals to stay at the edge of rocky bank patches.

The assemblage responses to the shape and size of the rocky bank patch were

similar between the two locations.  For example, the shape of the rocky bank patch did

not correlate with the density or biomass in either Point Lobos or Point Sur.  The

relationships between assemblage variables and rocky bank patch size were consistent

between the two regions.  This further suggests that the area of the rocky bank patches

drives much of the variability in the nearshore fish assemblage.

These results demonstrate the importance of investigating patterns in assemblage

structure in multiple places throughout the region, as well as against multiple independent

habitat variables.  The pattern of the relationships among the biological response

variables and the independent habitat variables were in a similar direction near Point

Lobos and Point Sur.  This indicates that the patterns in the nearshore fish assemblage

with respect to landscape-scale habitat variables are most likely similar throughout

central California.
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What are the management implications of the observed patterns in nearshore fish

assemblages with respect to landscape-scale habitat characteristics?

The spatial scales at which researchers collect fishery data, at which fish interact,

and at which we manage our fisheries are substantially different.  Most researchers

investigate assemblages of nearshore fishes at a scale smaller than the functional

subpopulations of species.  However, we manage fisheries at scales larger than the spatial

area of subpopulations.  By determining how assemblages and individual species respond

to independent habitat variables across a landscape, we are able to gain a better

understanding of how assemblages of fishes are distributed and how species interact

within the assemblage at spatial scales more similar to those of subpopulations.  Results

from this study therefore have important ecosystem-level implications for fisheries

management.

Currently, the data collection technique used in this study is utilized in surveys

that inform stock assessments of commercially harvested species (e.g., Yoklavich et al.

2007).  This study demonstrated that species are contagiously distributed; higher densities

of large rockfishes are disproportionately observed at the edge of rocky bank patches.  To

accurately estimate the current standing biomass of such species for stock assessments, it

is imperative to design sampling schemes that survey the rocky bank patch edges where

these species are present.  Abundance estimates will be more accurate if sampling is

stratified across the landscape based upon knowledge of the non-random patterns of

species distribution.
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Some fisheries scientists have estimated regional population abundance for stock

assessments by multiplying fish density estimates by the amount of available rocky

habitat (O’Connell and Carlile 1993).  This method holds promise for estimating

population sizes and species composition when limited resources are available.

However, results from this study demonstrate that species are not uniformly distributed

throughout rocky bank patches within the rocky habitat.  Depending on the initial

sampling location, such techniques could result in biased estimates.  For instance, if

surveys of commercially important large rockfishes, e.g., Vermilion (S.  miniatus, Jordan

and Gilbert 1880) and Canary Rockfish (S.  pinnger, Gill 1864) or Bocaccio, were only

conducted within the interior of rocky bank patches, the estimates of density would be

artificially low because these species are positively correlated with proximity to rocky

bank patch edges.  Further work investigating species-specific responses to the edge and

interior portions of rocky bank patches is necessary prior to fully utilizing the above-

mentioned technique of extrapolating population size from habitat availability.

Additionally, these results illustrate that edge portions of rocky bank patches

serve an important function in shaping the nearshore fish assemblage.  Therefore, area-

based management decisions that are intended to protect the community (e.g., MPAs) or

the habitat necessary to support these communities (e.g., Essential Fish Habitat) should

ensure that these edge zones of rocky bank patches are sufficiently protected.  Further

studies should attempt to quantify which ecological processes that occur along the edge

of rocky bank habitats result in increased density, diversity, and size of individuals.
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Other results from these analyses have important implications for area-based

management.  Two dominant questions in designing effective area-based management

approaches are the scale at which management decisions should be made and how to

effectively monitor the effects of these management decisions.  Results from this study

provided information for both of these questions.  The significant relationship between

species richness and rocky bank patch size demonstrated that as the area of a rocky bank

patch increases linearly, the number of species increases non-linearly.  If the goal of area-

based management is to protect the diversity of the fish assemblage, as estimated by the

species richness, this indicates that protecting larger rocky bank patches may be more

effective.

Knowing the species-area relationship for central Californian rocky banks leads to

the question of what size of rocky bank patches should be protected.  Results from this

study demonstrated that rocky bank patches that are roughly 0.97 km2 would protect 90%

of the total number of species within the region.  Additionally, the relationship between

cumulative abundance of fishes and rocky bank patch size provides information about the

area necessary to protect a viable portion of the population, once minimum viable

population size is known (Gaines et al. 1992).  The species-area relationships could be

determined for individual species, or for the assemblage, to include in viability analyses.

Information from these two data sources would enable managers to define more robust

criteria for the amount of area required to protect the nearshore fish assemblage or

individual stocks.
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The relationship between species richness and area surveyed also provides

important information for monitoring area-based management or for assessing the health

of the nearshore fish assemblage.  The species-accumulation relationships for area

surveyed illustrate that at least 0.03 km2 of a rocky bank patch should be surveyed to

observe 90% of the species within the rocky bank patch.  Knowing how much of a rocky

bank patch to survey would enable researchers to more efficiently allocate their sampling

efforts and to increase the accuracy of their estimates of the biological response variables.

These results demonstrate that the size of rocky bank patches is a driving factor in

the composition of the nearshore fish assemblage and in our understanding of it.  Area-

based management is grounded in the importance of the spatial configuration of habitats

and species distributions.  Research on fish-habitat relationships at the fine scale has, to

date, been the primary consideration when protecting the nearshore fish assemblage.

However, the results of this study demonstrate that it is imperative to consider landscape-

scale habitat characteristics across a landscape, especially habitat patch size.  This

information will improve our ability to manage fisheries in smaller areas of the coastline.

Conclusions

Landscape-scale research in the marine environment is an emerging field, and

additional studies enhance our ability to determine if it is possible to transfer terrestrial

models of management to the oceans.  The results of this study highlight the similarities

and differences among sub-tidal rocky habitat, other marine ecosystems, and terrestrial
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environments.  It is important to consider these differences when attempting to apply

ecological patterns across ecosystems.  Additionally, having an increased understanding

of the response of nearshore fish assemblages to landscape-scale habitat characteristics

will enable managers to design more effective area-based management approaches (e.g.,

MPAs) in terms of their size, shape, and location.  Therefore, understanding patterns in

fish assemblages across a landscape will improve fisheries management locally as well as

regionally.

This study documented that predictable landscape-scale patterns do exist in the

distribution of nearshore fish assemblages.  For example, there was an increase in the

assemblage biomass, richness, and mean length of fishes in the edge zones of sub-tidal

rocky bank habitat patches at the landscape scale.  Results also indicate that there was a

significant increase in the density of large rockfishes at the edge of rocky bank patches.

Additionally, there was a significant increase in the species richness of fishes with

increasing rocky bank patch size.  In fact, rocky bank patch size explained more of the

variability in the fish assemblage structure than the shape of the rocky bank patch.  These

results show that there are patterns in the distributions of nearshore fishes across a

landscape.  To appropriately survey fishes across a landscape it is imperative to design

sampling protocol with an understanding of these patterns.

However, this study also demonstrated that terrestrial paradigms are not directly

applicable to the nearshore fish assemblage in temperate sub-tidal marine habitats.  The

complexity of the rocky bank patch shape was not a good predictive indicator for the

nearshore fish assemblage.  There were no significant relationships among patch shape
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and the density or diversity of the nearshore fish assemblage, however the range of patch

shapes used in this study may have been too restrictive to observe significant

relationships.  Although there was a significant relationship between patch shape and

species richness, it was a negative relationship rather than the positive relationship

repeatedly observed in terrestrial systems.  In addition, there was no significant

relationship between species density and the proximity to the patch edge for the

nearshore fish assemblage.  These results highlight that terrestrial paradigms should not

be directly applied to the marine environment.  Instead, further research should quantify

the patterns of nearshore fish assemblage with respect to landscape-scale habitat

characteristics.
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Appendices

Appendix A  Species observed near Point Lobos and Point Sur, by abundance and
percentage abundance.  Species in bold, individually make up more than 1% of the total
abundance

Scientific Name Common Name Abundance Percentage Abundance Percentage
Agonidae Poacher 1 0.00% 1 0.01%
Anarrhichthys ocellatus Wolf Eel 0 0.00% 1 0.01%
Bathymasteridae Ronquil 17 0.08% 15 0.22%
Citharichthys sordidus Sanddab 5 0.02% 1 0.01%
Cottidae Sculpin 12 0.05% 1 0.01%
Damalichthys vacca Pile Surfperch 25 0.11% 12 0.18%
Embiotoca jacksoni Black Surfperch 9 0.04% 2 0.03%
Embiotoca lateralis Striped Surfperch 11 0.05% 1 0.01%
Hexagrammos decagrammus Kelp Greenling 34 0.15% 15 0.22%
Hydrolagus colliei Ratfish 7 0.03% 1 0.01%
Pleuronectiformes Flatfishes 4 0.02% 1 0.01%
NA Unidentified 78 0.35% 22 0.32%
Odontopyxis trispinosa Pygmy Poacher 1 0.00% 0 0.00%
Ophiodon elongatus Lingcod 27 0.12% 27 0.40%
Oxyjulis californica Senorita 9 0.04% 0 0.00%
Oxylebius pictus Painted Greenling 321 1.45% 284 4.16%
Phanerodon spp. Surfperch 46 0.21% 6 0.09%
Phanerodon atripes Sharpnose Seaperch 5 0.02% 1 0.01%
Phanerodon furcatus White Seaperch 36 0.16% 0 0.00%
Pholidae Gunnel 6 0.03% 4 0.06%
Raja binoculata Big Skate 1 0.00% 0 0.00%
Rathbunella hypoplecta Stripedfin Ronquil 7 0.03% 9 0.13%
Rhacochilus toxotes Rubberlip Surfperch 7 0.03% 2 0.03%
Rhinogobiops nicholsii Blackeye Goby 3698 16.65% 1179 17.26%
Scorpaena guttata Striped Scorpionfish 1 0.00% 0 0.00%
Scorpaenichthys marmoratus Cabezon 0 0.00% 1 0.01%
Sebastes atrovirens Kelp Rockfish 2 0.01% 0 0.00%
Sebastes carnatus Gopher Rockfish 139 0.63% 144 2.11%
Sebastes caurinus Copper Rockfish 21 0.09% 21 0.31%
Sebastes chlorostictus Greenspot Rockfish 27 0.12% 8 0.12%
Sebastes constellatus Starry Rockfish 256 1.15% 51 0.75%
Sebastes emphaeus Puget Rockfish 9 0.04% 2 0.03%
Sebastes ensifer Swordspine Rockfish 7 0.03% 1 0.01%
Sebastes entomelas Widow Rockfish 362 1.63% 385 5.64%
Sebastes flavidus Yellowtail Rockfish 91 0.41% 129 1.89%
Sebastes helvomaculatus Rosethorn Rockfish 1 0.00% 0 0.00%
Sebastes hopkinsi Squarespot Rockfish 1749 7.87% 1559 22.82%
Sebastes jordani Shortbelly Rockfish 1 0.00% 0 0.00%
Sebastes maliger Quillback Rockfish 7 0.03% 0 0.00%
Sebastes melanops Black Rockfish 0 0.00% 1 0.01%
Sebastes miniatus Vermilion Rockfish 53 0.24% 83 1.22%
Sebastes moseri Whitespeckeled Rockfish 0 0.00% 1 0.01%

Lobos Sur
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Sebastes mystinus Blue Rockfish 501 2.26% 149 2.18%
Sebastes nebulosus China Rockfish 31 0.14% 8 0.12%
Sebastes ovalis Speckled Rockfish 9 0.04% 4 0.06%
Sebastes paucispinis Bocaccio 21 0.09% 4 0.06%
Sebastes pinniger Canary Rockfish 41 0.18% 11 0.16%
Sebastes rosaceus Rosy Rockfish 1483 6.68% 726 10.63%
Sebastes ruberrimus Yelloweye Rockfish 3 0.01% 5 0.07%
Sebastes rufus Bank Rockfish 10 0.05% 0 0.00%
Sebastes semicinctus Halfbanded Rockfish 161 0.72% 7 0.10%
Sebastes serranoides Olive Rockfish 253 1.14% 168 2.46%
Sebastes serriceps Treefish 1 0.00% 1 0.01%
Sebastes spp Rockfish 6134 27.62% 1465 21.45%
Sebastes wilsoni Pygmy Rockfish 6225 28.03% 76 1.11%
Sebastes zacentrus Sharpchin Rockfish 1 0.00% 0 0.00%
Sebastomus spp Sebastomus 221 1.00% 236 3.45%
Stichaeidae Prickleback 6 0.03% 0 0.00%
Torpedo Californica Pacific Electric Ray 1 0.00% 0 0.00%
Zalembius rosaceus Pink Surfperch 9 0.04% 0 0.00%
Zaniolepis frenata Shortspine Combfish 6 0.03% 0 0.00%
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Appendix B  Length-weight parameters obtained from published, peer-reviewed
literature that were used during this study.  The listed units are from the original
publication.  Sources of each parameter, or the proxy species used, are listed

Scientific Names Common Names a b units Sources
Agonidae Poacher 0.003 3.206 g/cm Glubokov & Orlov 2007 (Percis japonica , Sarritor frenatus )
Anarrhichthys ocellatus Wolf Eel 0.050 3.091 kg/mm Karpov 1986
Citharichthys sordidus Sanddab 0.000 3.260 g/mm Rackowski& Pikitch 1989
Cottidae Sculpin 0.055 3.160 g/mm Stokley 1952
Damalichthys vacca Pile Surfperch 0.000 3.135 g/mm DeMartini et al. 1994
Embiotoca jacksoni Black Surfperch 0.001 2.864 g/mm Froeschke et al 2007
Embiotoca lateralis Striped Surfperch 0.154 3.010 kg/mm Karpov 1986
Hexagrammos decagrammus Kelp Greenling 0.016 3.000 g/cm Fishbase
Hydrolagus colliei Ratfish 0.002 2.755 kg/mm Barnet 2008
Icelinus tenuis Spotfin Sculpin 0.179 2.896 kg/mm Karpov 1986
Microstomus pacificus Dover Sole 0.002 3.436 g/cm NOAA-TM-AFSC-89
Pleuronectiformes Flatfishes 0.004 3.223 g/cm NOAA-TM-AFSC-89
Odontopyxis trispinosa Pygmy Poacher 0.003 3.206 g/cm Glubokov & Orlov 2007
Ophiodon elongatus Lingcod 0.002 3.390 g/cm Pikitch & Rogers 1989
Oxyjulis californica Senorita 0.000 3.500 g/mm (SL) Eschmeyer 1998
Oxylebius pictus Painted Greenling 0.032 3.384 g/mm deMartini & Anderson
Phanerodon spp. Surfperch 0.100 3.192 kg/mm Karpov 1986
Phanerodon atripes Sharpnose Seaperch 0.100 3.192 kg/mm Karpov 1986
Phanerodon furcatus White Seaperch 0.001 2.996 g/mm Quast 1968b; Antrim 1981
Pholidae Gunnel 0.007 3.249 g/cm Fishbase
Raja binoculata Big Skate 0.050 3.106 kg/mm Ebert et al. 2008
Raja rhina Longnose Skate 0.060 3.091 kg/mm Ebert et al. 2008
Raja spp. Skates 0.004 3.181 g/cm Moutopoulos & Stergiou 2002 (Raja miraletus , Raja radula )
Rathbunella hypoplecta Stripedfin Ronquil NA NA NA NA
Rhacochilus toxotes Rubberlip Surfperch 0.000 3.360 g/mm (SL) Quast 1968b 
Rhamphocottus richardsonii Grunt Sculpin 0.179 2.896 kg/mm Karpov 1986
Rhinogobiops nicholsii Blackeye Goby 0.000 3.470 mg/mm Mesa 1999 (Aphia minuta , Crystallogobius linearis )
Scorpaena guttata Striped Scorpionfish 0.020 3.007 g/cm Love et al 1987
Scorpaenichthys marmoratus Cabezon 0.029 3.000 g/cm Fishbase
Sebastes atrovirens Kelp Rockfish 0.000 3.172 g/mm Lea et al. 1999
Sebastes carnatus Gopher Rockfish 0.027 3.000 g/cm Fishbase
Sebastes caurinus Copper Rockfish 0.018 3.040 g/cm Fishbase; Haldstorm & Love 1991
Sebastes chlorostictus Greenspot Rockfish 0.000 3.001 g/mm Love 1987
Sebastes constellatus Starry Rockfish 0.016 3.160 g/cm Fishbase; Haldstorm & Love 1991
Sebastes elongatus Greenstripe Rockfish 0.008 3.144 g/cm NOAA-TM-AFSC-89
Sebastes emphaeus Puget Rockfish 0.059 2.687 g/cm Fishbase
Sebastes ensifer Swordspine Rockfish 0.013 2.970 g/cm Love 1987
Sebastes entomelas Widow Rockfish 0.005 3.341 g/cm Pikitch & Rogers 1989
Sebastes flavidus Yellowtail Rockfish 0.013 3.055 g/cm Pikitch & Rogers 1989
Sebastes helvomaculatus Rosethorn Rockfish 0.010 3.119 g/cm NOAA-TM-AFSC-89
Sebastes hopkinsi Squarespot Rockfish 0.015 2.964 g/cm Love 1987
Sebastes jordani Shortbelly Rockfish 0.014 3.152 NA NA
Sebastes levis Cowcod 0.014 3.093 g/cm Fishbase; Haldstorm & Love 1991
Sebastes maliger Quillback Rockfish 0.030 3.000 g/cm Fishbase
Sebastes melanops Black Rockfish 0.021 3.286 g/cm Fishbase; Haldstorm & Love 1991
Sebastes miniatus Vermilion Rockfish 0.033 2.923 g/cm Fishbase; Haldstorm & Love 1991
Sebastes moseri Whitespeckeled Rockfish0.014 3.152 NA NA
Sebastes mystinus Blue Rockfish 0.017 2.808 g/cm Fishbase; Haldstorm & Love 1991
Sebastes nebulosus China Rockfish 0.023 3.000 g/cm Fishbase
Sebastes ovalis Speckled Rockfish 0.006 3.177 g/cm Love 1987
Sebastes paucispinis Bocaccio 0.008 3.199 g/cm Pikitch & Rogers 1989
Sebastes pinniger Canary Rockfish 0.012 3.107 g/cm Pikitch & Rogers 1989
Sebastes rosaceus Rosy Rockfish 0.005 3.386 g/cm Love 1987
Sebastes ruberrimus Yelloweye Rockfish 0.014 3.000 g/cm Fishbase
Sebastes rubrivinctus Flag Rockfish 0.015 3.000 g/cm Fishbase
Sebastes rufus Bank Rockfish 0.015 3.147 g/cm Fishbase; Haldstorm & Love 1991
Sebastes semicinctus Halfbanded Rockfish 0.014 2.977 g/cm Haldstorm & Love 1991
Sebastes serranoides Olive Rockfish 0.011 2.968 g/cm Fishbase 
Sebastes serriceps Treefish 0.005 3.341 g/cm Pikitch & Rogers 1989
Sebastes spp. Rockfish 0.014 3.154 NA NA
Sebastes wilsoni Pygmy Rockfish 0.014 3.154 NA NA
Sebastes zacentrus Sharpchin Rockfish 0.006 3.282 g/cm NOAA-TM-AFSC-89
Sebastomus spp. Sebastomus 0.000 3.293 g/mm Rogers at al 1998, Ianelli et al. 1994, Miller 1985
Stichaeidae Prickleback 0.024 3.303 g/cm LeDrew & Green 1975
Torpedo Californica Pacific Electric Ray 0.030 2.948 g/mm Neer & Cailliet 2001
Zalembius rosaceus Pink Surfperch 0.100 3.192 kg/mm Karpov 1986
Zaniolepis frenata Shortspine Combfish 0.003 3.323 g/cm Rodriguez-Romero et al 2009 (Zaniolepis latipinnis )
Zaniolepis spp. Combfish 0.003 3.323 g/cm Rodriguez-Romero et al 2009 (Zaniolepis latipinnis )
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Appendix C  Equations and definitions of the diversity variables used in species
composition calculations

Equation Variables

Bray-Curtis Index of Similarity C ij  - sum of minimum abundance of the various species
S i  - total number of individuals in sample i 
S j  - total number of individuals in sample j 

Heterogeneity (Shannon-Weiner) n i  - number of individuals in species i 
S - number of species (richness)
N  - total number of all individuals
p i  - relative abundance of each species

Evenness (Pielou) H' - species heterogeneity
H max - maximum value of H':
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Appendix D  Frequency histograms of the independent habitat variables per rocky bank
patch near Point Lobos and Point Sur.  The mean depth (a), rugosity (b), P:A ratio (c),
and area (d) per patch near Point Lobos (n = 24) and near Point Sur (n = 13)
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Appendix E  Species-accumulation curves and comparisons of standard error and
coefficient of variation of density.  The results are reported for species richness with
depth (a) and comparisons of standard error and coefficient of variation of density for
shallow and deep rocky bank patches (b-c) near Point Lobos (1) and shallow depths near
Point Lobos and Point Sur (2 e-g).  The slope through the final four points, to determine
if an asymptote was reached, are included in the tables for near Point Lobos (1 d) and
near Point Sur (2 h).  Open circles denote 75% of the total number of species observed
and filled circles denote 90% of the total number of species observed

1) Point Lobos shallow and deep
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2) Point Lobos and Point Sur (shallow)

d
Index Slope Asymptote? Slope Asymptote?

Richness 0.173 No 0.140 No
Standard Error (Density) < -0.001 Yes < -0.001 Yes
Coefficient of Variation (Density) < -0.001 Yes -0.001 Yes

Shallow Deep
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h
Index Slope Asymptote? Slope Asymptote?

Richness 0.130 No 0.240 No
Standard Error (Density) < 0.001 Yes < -0.001 Yes
Coefficient of Variation (Density) < 0.001 Yes -0.002 Yes

Point Lobos Point Sur



115

Appendix F  Biological response variables of nearshore fish assemblage with respect to
depth and rugosity near Point Lobos.  These results are grouped by the  (1) assemblage,
(2) species groups, and (3) the species-specific analyses.  Assemblage relationships of
density (a), biomass (b), richness (c), evenness (d), and heterogeneity (e) with respect to
depth are reported.  In addition, the relationships among rugosity with the assemblage
density (f), biomass (g), richness (h), evenness (i), and heterogeneity (j) are reported.
Species-group relationships for the density (k) and length distributions (l) with respect to
depth and rugosity (respectively, m-n) are reported.  Species-specific relationships of
density (o), biomass (p), mean length (q), and length distributions (r) with respect to
depth are reported.  Species-specific relationships among rugosity with respect to density
(s), biomass (t), mean length (u), and length distributions (v) are reported.  Gray denotes
the shallow depth category and black denotes the deep depth category.  Asterisks indicate
size classes in which fish were observed in abundances too small to be observed on the
relative frequency histograms.  Standard error is plotted as vertical bars.  Significant
linear relationships are denoted with dashed regression lines.  P-values, and when
applicable, r2 values are included in the legends

1. Assemblage
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2. Species groups
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3. Specific species
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Appendix G  Species group goodness-of-fit analyses with respect to three landscape-
scale independent habitat variables.  Results are reported for the proximity to edge (a),
P:A ratio (b), and area (c)

a

b

c

p x2 df
large rockfishes 0.955 0.003 1
dwarf rockfishes 0.671 0.181 1
large non-rockfishes 0.566 0.33 1
other benthic fishes 0.999 0 1

p x2 df
large rockfishes 0.710 0.139 1
dwarf rockfishes 0.012 6.247 1
large non-rockfishes 0.592 0.396 1
other benthic fishes 0.626 0.237 1

p x2 df
large rockfishes 0.062 3.481 1
dwarf rockfishes < 0.001 12.914 1
large non-rockfishes 0.841 0.04 1
other benthic fishes 0.011 6.465 1
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Appendix H  Species observed in the edge zone, interior zone, or neither zone

Scientific Name Common Name Edge Interior Neither
Agonidae Poacher x
Anarrhichthys ocellatus Wolf Eel x
Bathymasteridae Ronquil x x
Citharichthys sordidus Sanddab x
Cottidae Sculpin x x
Damalichthys vacca Pile Surfperch x x
Embiotoca jacksoni Black Surfperch x x
Embiotoca lateralis Striped Surfperch x x
Hexagrammos decagrammus Kelp Greenling x x
Hydrolagus colliei Ratfish x x
Pleuronectiformes Flatfishes x
NA Unidentified x x
Odontopyxis trispinosa Pygmy Poacher x
Ophiodon elongatus Lingcod x x
Oxyjulis californica Senorita x
Oxylebius pictus Painted Greenling x x
Phanerodon spp. Surfperch x x
Phanerodon atripes Sharpnose Seaperch x x
Phanerodon furcatus White Seaperch x x
Pholidae Gunnel x x
Raja binoculata Big Skate x
Rathbunella hypoplecta Stripedfin Ronquil x x
Rhacochilus toxotes Rubberlip Surfperch x x
Rhinogobiops nicholsii Blackeye Goby x x
Scorpaena guttata Striped Scorpionfish x
Scorpaenichthys marmoratus Cabezon x
Sebastes atrovirens Kelp Rockfish x
Sebastes carnatus Gopher Rockfish x x
Sebastes caurinus Copper Rockfish x x
Sebastes chlorostictus Greenspot Rockfish x x
Sebastes constellatus Starry Rockfish x x
Sebastes emphaeus Puget Rockfish x x
Sebastes ensifer Swordspine Rockfish x x
Sebastes entomelas Widow Rockfish x x
Sebastes flavidus Yellowtail Rockfish x x
Sebastes helvomaculatus Rosethorn Rockfish x x
Sebastes hopkinsi Squarespot Rockfish x x
Sebastes jordani Shortbelly Rockfish x
Sebastes maliger Quillback Rockfish x x
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Sebastes melanops Black Rockfish x
Sebastes miniatus Vermilion Rockfish x x
Sebastes moseri Whitespeckeled Rockfish x
Sebastes mystinus Blue Rockfish x x
Sebastes nebulosus China Rockfish x x
Sebastes ovalis Speckled Rockfish x x
Sebastes paucispinis Bocaccio x x
Sebastes pinniger Canary Rockfish x x
Sebastes rosaceus Rosy Rockfish x x
Sebastes ruberrimus Yelloweye Rockfish x x
Sebastes rufus Bank Rockfish x x
Sebastes semicinctus Halfbanded Rockfish x x
Sebastes serranoides Olive Rockfish x x
Sebastes serriceps Treefish x x
Sebastes spp Rockfish x x
Sebastes wilsoni Pygmy Rockfish x x
Sebastes zacentrus Sharpchin Rockfish x x
Sebastolubus spp Sebastomus x x
Stichaeidae Prickleback x x
Torpedo Californica Pacific Electric Ray x
Zalembius rosaceus Pink Surfperch x x
Zaniolepis frenata Shortspine Combfish x x


