Wiring The Ocean to Understand Harmful Algal Blooms

Raphael Kudela University of California Santa Cruz

2011-2016: USGS Deployment of SPATT

Previous 1 Next

ALTY, Long-Residence

San Francisco Bay

Focusing on SF Bay, we know that several algal toxins are nearly ubiquitous in the Bay.

The Bay seems to act as a mixing bowl for both freshwater and marine toxins...

Those toxins accumulate in the food web

Domoic Acid (100% of mussels contaminated)

Microcystins (82% of mussels contaminated)

Paralytic Shellfish Toxins (25% of mussels contaminated)

Okadaic Acid, DTX-1, DTX-2 (100% of mussels contaminated)

Next-Generation Sensors

Wiring the Land-Sea Interface

San Lorenzo River, September 2015

Chlorophyll > 600 µg/L

218 ppb PSTs 146 ppb Nodularin

#	Affected Birds	Location, Year	HAB Species	
2250	Black Ducks, other	New Hampshire,	Gonyaulax	
	waterfowl	1972	tamarensis	
140	Brown Pelicans, Brandt's Cormorants	Santa Cruz, CA, 1991	Pseudonitzschia australis	
150	Brown Pelicans	Baja California, 1996	Pseudonitzschia spp.	
550	Northern Fulmars, Common Murres, large grebes	Monterey Bay, CA, 2007	Akashiwo sanguinea	
8000	Scoters, other divers	Washington State, 2009	Akashiwo sanguinea	
	-d	1		
September 2016				

HAB Toxin Detection on the 2nd Generation Environmental Sample Processor

~0.5 m

domoic acid

microcystins

PSTs

'pucks' hold filter media for sample collection & analysis

low toxin

membrane-based arrays used to conduct toxin cELISA; control & orientation features (green boxes) meter camera assay time ~1 hour

calibration curve provides quantitative estimate of toxin concentration

Credit: G. Doucette

Autonomous Water Sampling & Molecular Ecology

Wiring The Ocean: Are We There Yet?

Existing Shore Stations

Proposed Moorings

"Ecosystem Moorings" or persistently dwelling autonomous vehicles would improve HAB detection from ~20% to 70% for California

Frolov et al., Harmful Algae, 2013

4 0.0020 0.0050 0.0070 0.01 0.012 0.015 0.017 0.02 0.022 0.025 0.027 0.03 0.032 0.035 0.037 0.04 0.042 0.045 0.047 0.05

Interactive CeNCOOS Data Portal C-HARM Nowcasts and 3-day Forecasts http://www.cencoos.org/data/models/habs/

100, very high

Probability Maps

2015-01-01 pseudo-nitzschia probability

Particulate Domoic Acid Nowcast

432016-10-08 particulate domoic acid probability

432015-01-01 particulate domoic acid probability

1.0

Particulate Domoic Acid Forecast

Risk Maps

Geophysical Research Letters

RESEARCH LETTER

Midlatitude Marine Heatwaves:

10.1002/2016GL070023

Special Section:

Forrigg and Impay

An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions

Ryan M. McCabe¹, Barbara M. Hickey², Raphael M. Kudela³, Kathi A. Lefebvre⁴, Nicolaus G. Adams⁴, Brian D. Bill⁴, Frances M. D. Gulland⁵, Richard E. Thomson⁶, William P. Cochlan⁷, and Vera L. Trainer⁴

No...but we're headed in the right direction!

Wiring The Ocean

- The technology exists for sustained ocean observing of phytoplankton, HABs, and toxins
- No sensor is perfect—we need to combine traditional and "simple" technology with next-generation methods
- We are (slowly) moving towards supporting these efforts (transition from Research to Operations)
- We've come a long way!

Kudela Lab: Kendra Hayashi Anna McGaraghan Misty Peacock Cori Gibble Regina Radan Nilo Alvarado Dana Shultz ... and many more **PNW** Collaborators: Vera Trainer Ryan McCabe **Barb Hickey** Neil Banas Eric Bjorkstedt

Collaborators SF Bay: Jim Cloern, USGS Dave Senn, SFEI Martha Sutula, SCCWRP Lisa Campbell, Texas A&M ... and their teams Forecasting: Clarissa Anderson **Rick Stumpf** Mati Kahru Fred Bahr, Jen Patterson Others: Melissa Miller, Rob Ketley Brian Maurer & Roger Phillips Keith Bouma-Gregson

ECOHAB/MERHAB: James Birch

Holly Bowers Dave Caron Greg Doucette Meredith Howard Burt Jones Keith Loftin Drew Lucas John Ryan Chris Scholin G. Jason Smith Yi Chao

OCEAN PROTECTION

CeNCOOS

