Integrating HAB detection technologies with a regional observing system in the Great Lakes

HABs occur throughout the Great Lakes basin

NOAA studies HABs throughout the Great Lakes

Bloom projection to data dissemination requires a multifaceted effort

5) Disseminate Monitoring Data

4) Forecast

NOAA's cross-line office CHAB team

Monitoring & Experiments **Timothy Davis Tom Johengen* Greg Doucette Duane Gossiaux** Ashley Burtner* Danna Palladino* Heidi Purcell* Hank Vanderploeg Alicia Ritzenthaler* **Remote Sensing Steve Ruberg Richard Stumpf** Andrea Vander Woude* Steve Constant **George Leshkevich** Ron Muzzi **Russ Miller**

Modeling Richard Stumpf Eric Anderson Craig Stow Tim Wynne Danielle Dupuy Mark Rowe* Greg Lang Communications Joe Smith*

BOLD = HAB team leads * = CILER employees

<u>Weekly sampling reveals important seasonal trends that highlight</u> <u>potential environmental drivers and inform future experiments</u>

- Toxicity changes throughout the bloom
- Relationship between nitrogen and toxicity
- Microcystis blooms occur even when phosphorus concentrations are low
- Other factors beyond nutrients may be important in driving bloom structure and function

Western Lake Erie Real-time HABs Monitoring

Sensors:

- . YSI EXO sondes
- . Chlorophyll, Phycocyanin, Turbidity, CDOM

. Wetlabs Cycle -SRP

Continuous nutrient monitoring tracks field collections well

Continuous sensor work being conducted by Tom Johengen, Steve Ruberg, Danna Palladino, Heidi Purcell, Steve Constant, Ron Muzzi and Russ Miler

Continuous pigment monitoring yielded more variability

Continuous sensor work being conducted by Tom Johengen, Steve Ruberg, Danna Palladino, Heidi Purcell, Steve Constant, Ron Muzzi and Russ Miler

- Overall trend is seen but much greater variation between grab and continuous data than the nutrient sensors
- 'Packaging effects' of colonies interferes with the ability to accurately detect fluorescence signal
- Buoy setup instruments record data about 2m below the surface whereas Niskin samples are taken at 1m
- Highlights the need to be careful when integrating datasets

Autonomous near real-time toxin detection for Lake Erie

- Purchased with GLRI funds post-Toledo water crisis
- Collaboration between NOAA, MBARI, WHOI, OSU
- Truly emerging technology
 - Fewer than 20 worldwide
 - ESPniagara is the first to study freshwater CHABs
 - <u>Fine-scale MC observations are critical for toxicity models</u> Stumpf, **Davis** et al., 2016; Harmful Algae

ESP microcystins assay design

Work being conducted by Greg Doucette and Tina Mikulski

- Using mAb against ADDA moiety and MC-BSA conjugate for comparison with Abraxis ELISA
- Compatible with extraction solvent
- Good range of detection on benchtop "mimic"
- Good overall intensity values

0.2 ng/mL MCLR

2.0 ng/mL MCLR

20.0 ng/mL MCLR

200.0 ng/mL MCLR

Potential for multiplexed detection of MC & STX

Work being conducted by Greg Doucette and Tina Mikulski

Proposed array map for MC + STX assay using α -MC & α -STX MAb

 competitive (c) ELISA membrane-based array employs MCLR-BSA & STX-OVA spots

- concurrent application of $\alpha\text{-MC}$ and $\alpha\text{-STX}$ MAbs in

'cocktail' yields two assay results generated

simultaneously on the same array

- will broaden ESP cELISA detection capabilities to include MC, CYL, STX for single sample
- requires development of efficient extraction protocol for MC, CYL, and STX

example of analogous, multiplexed PST array for simultaneous detection of congener groups without (e.g., STX) and with (e.g., NEO) N-1 OH moiety <u>Start of Hyperspectral Detection of Cyanobacteria:</u> <u>Data in small areas; plane and UAS systems.</u> Lead by Andrea VanderWoude and Steve Ruberg

Algorithm Development; and potential match to satellite to fit into bulletin in the future

Recent Scum Event – South of Monroe Water Intake at WE8 9-19-2016 (Truecolor)

Hyperspectral flight found scum near WE8, 5 km south of Monroe on Sep-19 at 11:30 AM

Vander Woude, AJ

gle Earth

Using molecular tools to monitor CHABs:

<u>% toxic Microcystis</u> = proportion of Microcystis cells containing the genetics to produce microcystins (mcyD or E / 16S x 100)

Determined by (1) qPCR and (2) metagenomics

Multiplex qPCR assay

Contact: Mark VanAsten, Mark.Vanasten@diagnostictechnology.com.au

Where is this assay being used?

- USA
 - Part of Ohio EPA water testing algorithm rules
 - North East Ohio Regional Sewer District Laboratory (service offering)
 - Evaluations at Kansas (EPA Region 7) Californian Water Board, Fish & Game, Indiana Office of Water, US EPA Office R&D
- Australia
 - Sydney and Melbourne Water Utility, NSW Water
- Elsewhere
 - WLN, Netherlands
 - PUB Singapore

Rapid assessment of CHAB community composition

using DNA Barcoding

Work being conducted by Natalia Ivanova and Jerome Comte

Environment and

Climate Change Canada

Environnement et

Changement climatique Canada

What is omics?

Genetic Connectivity

Michael McKay², George S. Bullerjahn²

Timothy W. Davis¹⁺⁰, Susan B. Watson¹, Mark J. Rozmarynowycz², Jan J. H. Ciborowski², Robert

Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys

Matthew J. Harke,[†] Timothy W. Davis,[‡] Susan B. Watson,⁵ and Christopher J. Gobler*^{,†}

The SME Journal (2014), 1–13 o 2014 International Society for Microbial Ecology: All rights meaned 10:53-70(2):14

ORIGINAL ARTICLE

Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in *Microcystis*

Morgan M Steffen¹, Stephen P Dearth², Brian D Dill^{3,4}, Zhou Li^{3,4}, Kristen M Larsen¹, Shawn R Campagna² and Steven W Wilhelm¹

Genomic database will fuel research in the Great Lakes and beyond

Work being conducted by Greg Dick and Kevin Meyer, University of Michigan

Menu

Table of cultured Microcystis strains

Cyanohub Home

Query Form

Strain Name	Country	Toxic	Genome Size (Mb)	NCBI Tax. ID	No. Genes (documented)
PCC 7005	USA	No	4.9	267870	5081
PCC_7806	NETHERLANDS	Yes	5.3	267872	5169
PCC 9432	CANADA	No	5	1160280	4952
PCC_7941	CANADA	Yes	4.8	213618	4646
PCC_9443	CENTRAL AFRICAN REPUBLIC	Yes	5.1	1160281	5139
PCC 9701	FRANCE	No	4.7	721123	4673
PCC_9717	FRANCE	Yes	5.2	1160286	5234
PCC 9806	USA	No	4.2	1160282	4127
PCC 9807	SOUTH AFRICA	Yes	5.1	1160283	5104

Search Database

Basic Fields

Strain Name:

Location:

- Searchable genomic database for CHAB genera including Great Lakes strains
- Publicly available
 resource
- Serves as a link between environmental and genomic data
- Critical to further understand the response of CHAB genera to environmental drivers

MBio Diagnostics Multiplexed Toxin Assay System

m:bio

Contact: Mike Lochhead, mike.lochhead@mbiodx.com

- Cartridge-based multiplexed immunoassays for toxin detection
- Portable fluorescence reader
- Assay time < 15 minutes
- On-board reagents & waste

Patented waveguide-based array technology

<u>Development of an inexpensive and user-</u> <u>friendly DNA preservation method</u>

- Collaboration with George Bullerjahn, Steve Giglio, Susan Watson
- 12 strains were pipetted onto duplicate FTA cards and allowed to dry at room temperature and left at 24°C or 37°C for ~2 weeks
- DNA was then extracted and purified

Strain	Toxic?
Anabaena variabilis NIVA 19	+ mcy
Synechococcus sp. ARC 11	-
Synechococcus sp. CP1181	-
Anabaena vigueri	-
Pseudanabaena sp. LE011-01	-
Planktothrix sp. LE011-012	-
Anabaena variabilis NIVA 19	+ mcy
Microcystis aeruginosa 15A	unknown
Anabaena planktonica	-
Anabaena sp. A102	-
Microcystis viridis NIVA169/9	+ mcy
Pseudanabaena limnetica NIVA 111	unknown

Cyanobacterial DNA can be extracted and sequenced

Ambient (24°C)				Elevated (37°C)				
<u>Strain</u>	Toxic?	Toxic? cyano16S mcyA Strain		Strain	Toxic?	cyano16S	<u>mcyA</u>	
Anabaena variabilis NIVA 19	+ mcy	+	-	Anabaena variabilis NIVA 19	+ mcy	+	-	
Synechococcus sp. ARC 11	-	+	-	Synechococcus sp. ARC 11	-	+	-	
Synechococcus sp. CP1181	-	+	-	Synechococcus sp. CP1181	-	+	-	
Anabaena vigueri	-	+	-	Anabaena vigueri	-	+	-	
Pseudanabaena sp. LE011-01	-	-	-	Pseudanabaena sp. LE011-01	-	-	-	
Planktothrix sp. LE011-012	-	-	-	Planktothrix sp. LE011-012	-	-	-	
Anabaena variabilis NIVA 19	+ mcy	+	+	Anabaena variabilis NIVA 19	+ mcy	+	+	
Microcystis aeruginosa 15A	unknown	+	-	Microcystis aeruginosa 15A	unknown	+	-	
Anabaena planktonica	-	+	-	Anabaena planktonica	-	+	-	
Anabaena sp. A102	-	+	-	Anabaena sp. A102	-	+	-	
Microcystis viridis NIVA169/9	+ mcy	+	+	Microcystis viridis NIVA169/9	+ mcy	+	+	
Pseudanabaena limnetica NIVA 111	unknown	+	+	Pseudanabaena limnetica NIVA 111	unknown	+	+	

- DNA was extracted from 83% of samples with 100% amplification of the cyano16S gene in all samples yielding DNA and 2 of the 3 of known toxic strains
- PCR products from *Synechococcus* sp. ARC 11 was sequenced for verification
- Cards are cheap, easy to use, do not need specialized storage, and inexpensive to send
- FTA cards are a valuable tool for water managers, park rangers and citizen scientists