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Executive Summary 
The Central Coast Regional Water Quality Board (CCRWQCB) is developing policies to 
prevent avoidable water pollution from agricultural runoff. Two Agricultural Orders 
(2012 and 2017) currently require farms that pose the greatest risk to water quality to 
implement Best Management Practices (BMPs), monitor water quality and report their 
actions to the CCRWQCB’s Irrigated Lands Regulatory Program (ILRP). 
 
Policy makers and stakeholders are interested in how currently applied BMPs are 
affecting water quality outcomes to inform further management and policy to improve 
surface water quality. A study completed by CSUMB’s ENVS660 Fall 2017 class 
examined how reported on-farm management practices related to water quality 
monitoring data. The BMP with the strongest correlation to increased nitrogen 
concentration was classifying practices as trade secret, while the strongest 
correlations to decreased nutrient concentration association were evaluating fertilizer 
need and timing, scheduling fertilizer to match crop requirements, and measuring 
nitrogen and phosphorus content of applied organics.  
 
This study expands upon previous work by CSUMB’s ENV 660 class. Specifically, we 
had four main objectives: 

1. Obtain and format the most recently published Irrigated Lands Regulatory 
Program (ILRP) farm management practice data. 

2. Revise the hydrologic framework to better link farming intensity and practices 
to water quality observations. In coordination with Central Coast Cooperative 
Monitoring Program, develop a refined set of watersheds for each of the 
Cooperative Monitoring Program (CMP) stations used in the original analysis. 

3. Characterize the farming practices (e.g., nutrient management practices, 
nitrogen applied, irrigation) and environmental factors (e.g., geology, weather, 
groundwater quality) of each watershed. 

4. Develop empirical models relating water quality to both farming practices and 
environmental factors (e.g., soils, climate, geology), and determine which 
farming practices are related to changes in water quality and how natural 
factors interact with these relationships. 

We met these objectives by evaluating the relationship between measured chemical 
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analytes, farming practices, and environmental variables in the watersheds upstream 
of 53 CMP monitoring stations across the Central Coast. The analytes considered were 
total ammonia as N, nitrate + nitrite as N, total nitrogen as N, and total phosphorus 
as P. We evaluated relationships by developing random forest models – a non-
parametric empirical modeling technique. These models then were used to determine 
which variables have the strongest correlation with variation in chemical concentration 
and load across all sites. 
 
We produced 32 models, one for each of the concentrations and loads of four analytes 
across four temporal scales. Our most robust models predicted annual nitrate + 
nitrite and total nitrogen concentrations (R2 ≥ 0.70). Models of summer 
concentrations or loads explained > 40% of the variation for all four analytes. Analysis 
of the models suggest that the groundwater quality has the greatest influence on 
surface water quality. Our models further suggest that several BMPs, most notably the 
lack of reporting, to be positively correlated with surface water quality. Reported total 
nitrogen applied and in soils was not significantly correlated with surface water 
quality though. 
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1 Introduction 
1.1  Background 
Agricultural Order 3.0, approved by the Central Coast Regional Water Quality Control Board 
(CCRWQCB) in March 2017, required growers whose farms pose the greatest risk to water 
quality in the Central Coast Region of California to implement Best Management Practices 
(BMPs) and to monitor the quality of water discharged from irrigated land they own or 
operate in order to prevent avoidable water pollution (CCRWQCB 2012). Ag Order 3.0 added 
a groundwater monitoring component and an expanded Total Nitrogen Applied reporting 
obligation to the requirements of Ag Order 2.0 (CCRWQCB 2017). Complying with these 
regulations can require a substantial amount of effort and fiscal expenditures on the part 
of the growers. While growers have been tasked with rethinking and altering many of their 
on-farm practices, they have yet to be presented with concrete evidence that their efforts 
over the last few years have improved regional water quality. Our client, the Water Quality 
Protection Program administrators at Monterey Bay National Marine Sanctuary (MBNMS), 
have therefore requested an analysis of how the water quality monitoring data of the lower 
Salinas and Pajaro Valleys relates to reported on-farm practices to help guide the 
development of future agricultural orders. 
 
The Central Coast Region extends approximately 250 miles from San Mateo County to 
Santa Barbara County and contains roughly 435,000 acres of irrigated land, over 3,000 
agricultural operations, more than 17,000 miles of surface waters, and approximately 
4,000 square miles of groundwater basins (CCRWQCB 2012). Although the State of 
California has some of the most stringent water pollution control regulations in the country 
under the Porter-Cologne Water Quality Control Act, the highest rates of nutrient loading 
and toxicity in California are routinely detected in the Central Coast Region largely due to 
years of unchecked nonpoint source pollution from agricultural runoff (Starner et al. 2006, 
CCRWQCB 2011). 
 
Ag Order 1.0, implemented in 2004 and revised several times since, created a new 
regulatory framework to ensure grower compliance and a means to monitor regional 
changes in water quality. The Irrigated Lands Regulatory Program (ILRP) is administered by 
the CCRWQCB and serves as the means through which the board regulates discharges from 
irrigated agricultural lands used for commercial crop production through issuing 
Conditional Waivers of Waste Discharge Requirements. Depending on the size of a grower’s 
operation, the type of crops being grown and a ranch’s proximity to impaired waterways, 
an agricultural operation will be placed into one of three tiers through the ILRP: Tier 1, 2, 
or 3. Tier 3 growers potentially pose a larger risk to water quality and are thus subjected 
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to more extensive regulations, while Tier 1 and Tier 2 growers have fewer obligations under 
the most recent Ag Orders. The Cooperative Monitoring Program (CMP) evolved in 
accordance with Ag Order 3.0 to reduce the burden of monitoring requirements on 
growers. Over 99% of all farms participating in the ILRP have elected to take part in the CMP 
and thus pay Preservation Inc., a local nonprofit, an annual fee to perform mandatory 
surface water quality monitoring on their behalf. Preservation Inc. monitors over 50 sites 
throughout the Central Coast Region. 

 
1.2  Objectives 
Our study objectives were to:  

• In coordination with Monterey Bay National Marine Sanctuary (MBNMS), obtain and 
format the most recently published Irrigated Lands Regulatory Program (ILRP) farm 
management practice data (2015 – 2018). 

• Revise the hydrologic framework to better link farming intensity and practices to 
water quality observations. In coordination with Central Coast Cooperative 
Monitoring Program, develop a refined set of watersheds for each of the CMP 
stations used in the original analysis. 

• Characterize the farming practices (e.g., nutrient management practices, nitrogen 
applied, irrigation) and environment (e.g., geology, weather, groundwater quality) of 
each watershed. 

• Develop empirical models relating water quality to both farming practices and 
environmental factors (e.g., soils, climate, geology), and determine which farming 
practices are related to changes in water quality and how natural factors interact 
with these relationships. 

1.3  Study area 
The Salinas and Pajaro watersheds, in California’s Central Coast, span parts of Monterey, 
Santa Cruz, San Benito, San Luis Obispo and Santa Clara counties and share boundaries with 
a handful of small watersheds (Elkhorn Slough, Moro Cojo and Alisal/Gabilan) on the coast 
(Figure 1). All drain into the Monterey Bay National Marine Sanctuary, comprising most the 
bay’s freshwater inputs (Fig 1). Land use across the upper watersheds varies while the lower 
watersheds are heavily used for agricultural production where a mild, Mediterranean climate 
makes year-round cultivation possible. Primary crops in the lower Salinas Valley include leaf 
and head lettuces, strawberries and various other vegetable row crops (MCAC 2016) while 
the majority of crops in the Pajaro Valley include caneberries (raspberries and blackberries), 
strawberries, apples and vegetable row crops (SCCAC 2016). The fertile soil in the flat valley 
bottoms of these two regions makes growing conditions ideal and agricultural operations 
highly profitable. The agriculture industry contributes billions of dollars to the local 
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economies on an annual basis. 

Due to decades of intensive agricultural production, groundwater and surface waters in the 
lower regions of the Salinas and Pajaro Watersheds are affected by a variety of nonpoint 
source pollutants, especially by nitrate. Harter and Lund with UC Davis (2012) found that 
nitrogen fertilizer and animal wastes are the primary sources of nitrate pollution in the 
Salinas Valley and that over one third of domestic and irrigation wells in the Salinas Valley 
exceed the drinking water standard for nitrate (10 mg/L as N) deemed acceptable by the 
California Department of Public Health. Comparable agricultural practices and histories of 
the Pajaro Valley make similar findings likely. 

The 2010 List of Impaired Waterbodies, pursuant to Section 303(d) of the federal Clean 
Water Act, designated fifteen waterbodies in the Lower Salinas watershed and five water 
bodies in the Pajaro River watershed as impaired by nitrate pollution (CCRWQCB 2011) while 
others were listed for a variety of other pollutants including, but not limited to: un-ionized 
ammonia, low dissolved oxygen, orthophosphate and chlorophyll a (CCRWQCB 2013). 

Few deny that water pollution on the Central Coast is a negative externality of local 
agricultural production. However, developing a region-wide solution to mitigating the 
problem is and will be a long, arduous task. As more stringent water quality policy changes 
begin to take effect, growers will have to adapt to new requirements. It is essential that 
throughout this process growers and regulators, alike, understand the true outcome of their 
efforts to best use limited time and resources. 
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Figure 1. Cooperative Monitoring Program water quality monitoring sites 
assessed in this study. 
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2 Methods 
2.1  Overview 
We based our analysis on CMP chemical data and ILRP data collected from 2016 through 
2018. We delineated watersheds for each CMP site using ArcGIS. We then summarized ILRP 
and publicly available environmental data to characterize each watershed and identify 
correlations with water quality. We assessed all correlations between predictors and 
response variables at a watershed scale by developing random forest (RF) models – a non-
parametric empirical modeling technique. These models can determine the relative 
importance of predictors in a model and show the effects of each predictor on the response 
variable after controlling for the effects of all other variables.  

2.2  Watershed Delineation 
Watersheds were delineated using CMP sampling site coordinates and a digital elevation 
model (DEM). We used ArcMap to plot each CMP sampling site. A DEM was 
downloaded from USGS National Map service at a resolution of 30 meters and used to 
produce two rasters representing flow direction and flow accumulation. The spatial points 
were snapped to the nearest, highest flow accumulation. Watersheds were produced at each 
spatial point using the flow direction raster.  

Each watershed raster and shapefile produced was quality control checked by hand against 
aerial or satellite photographs in Google Earth and with local experts from the CMP. 
Incorrect watersheds boundaries were then re-run with additional stream burns or walls as 
needed to create the correct flow pattern. Stream burns were created by decreasing the 
pixel value along a hand drawn line or NHD flowlines to “burn” a deeper value and force 
flow accumulation to flow through the lines. This technique was often used in very flat 
areas. Barrier walls were created by increasing pixel value along a hand drawn line or TIGER 
road lines to build up a “wall” that the flow direction and accumulation would see as a 
barrier. This technique was often used in areas where roads were observed blocking flow.  

Final quality check required manual matching of vertices between watershed polygons 
(especially along ridgelines) and merging upstream watersheds together where watersheds 
overlapped.  

2.3  Data Clean-up & Composition 
We obtained analyte and environmental data from publicly available sources (Table 1 and 
Appendix A). CMP chemical data was downloaded from the California Environmental Data 
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Exchange Network (CEDEN). We obtained farming data from the Central Coast Water Board 
through a request for public information. Environmental data on soils and precipitation were 
obtained from publicly available gridded datasets.  

We extracted analyte concentration data for ammonia, nitrate + nitrite, total nitrogen, and 
phosphorus at 53 CMP monitoring sites and calculated average concentration across four 
temporal scales at each site (Figure 2). We used one half the minimum detectable level (MDL) 
for records with no analyte concentrations. We next calculated load for each analyte at each 
of the four temporal scales by multiplying the mean concentration by the mean stream flow. 
Temporal scales were chosen to assess if water quality was more predictable during certain 
times of the year. We calculated the mean concentrations and loads based on the following 
time scales: October to March (winter), April to September (summer), October to September 
(annual water year), and October (first flush). 

We used a combination of Access, Excel, and R to clean drainage type, ranch characteristic, 
irrigation, and nitrogen applied data from the ILRP dataset. Drainage and irrigation data are 
calculated as proportions of total irrigated acres. Using the coordinates reported for each 
ranch in the IRLP data, we plotted each ranch using ArcMap to determine which watershed(s) 

 

Figure 2. Response variable data flow chart. Mean concentration and load 
were calculated for each analyte across each of four temporal scales. 

Table 1. Forty-five predictors, across 7 categories, were used for model development. A 
full list and description of all predictors are in Appendix A. 

Predictor category No. of predictors Source 
Nutrient management 15 Water Board 
Drainage 5 Water Board 
Ranch characteristics 6 Water Board 
Irrigation 3 Water Board 
Nitrogen applied 2 Water Board 
Groundwater 3 GAMA groundwater 
Geologic and environmental 11 USGS & PRISM 
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they resided in. Ranches near watershed boundaries likely lie in multiple adjacent watersheds, 
so ranch boundaries would provide a more accurate association of farming practices and 
watersheds. But this data is not available, and would have negligible impact on watershed 
summaries of farming practices. We used a one to many spatial join in ArcMap to account for 
upstream to downstream effects whereby farms may reside in multiple nested watersheds. 

We extracted nutrient management practices from the ILRP dataset (Table 2). Similar to the 
other ILRP data, we used a one to many join in ArcMap to account for ranches that may reside 
in multiple watersheds. We then used Python programming language to parse out and 
calculate the number of irrigated acres within each watershed where each practice was 
implemented. We used Excel to determine which ranches that did not submit an Annual 
Compliance Form (ACF).  

Groundwater quality data was downloaded from the Groundwater Ambient Monitoring and 
Assessment (GAMA) Program’s Groundwater Information System using the most recent record 
for each well from between 2015 and 2019. We created three separate rasters for nitrate, 
nitrite, and nitrate + nitrite by interpolating the downloaded data using Inverse Distance 
Weighting in ArcMap (Figure 3). We then calculated the watershed average for each raster for 
each of the CMP watersheds.   

Table 2. ILRP nutrient management practice implementation codes. 

Abbreviation Definition 
IA1 Evaluated fertilizer needs and timing of application 
IA2 Scheduled fertilizer applications to match crop requirements 
IA3 Measured nitrogen concentration in irrigation water 
IA4 Measured soil nitrate or soil solution nitrate 
IA5 Used precision techniques to place fertilizer in the root zone 
IA6 Measured nitrogen in plant tissues 
IA7 Measured phosphorus in soil 
IA8 Measured nitrogen and phosphorous content of organic amendments 
IA9 Mixed and loaded fertilizers on low runoff hazard sites 
IA10 Used urease inhibitors and/or nitrification inhibitors 
IA11 Modified crop rotation 
IA12 Used treatment systems (eg wood chip bioreactor) 
IA13 Other 
IA14 None 
IA15 Answer left blank or No ACF 
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Figure 3. Interpolated raster of nitrate + nitrite concentrations in wells 
(groundwater). 
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2.4  Building random forest models 
Random forest is a non-parametric empirical modeling technique that is based on an 
ensemble of decision trees fitted to a dataset (Breiman 2001). Fitting a single classification 
tree to one dataset may lead to models that are overfit (Cutler et al. 2007). Random forest 
avoids overfitting by fitting thousands of classification trees using different random subsets 
of the original data. Random forest then averages predictions across all trees within the 
“forest” of classification trees to produce ensemble predictions that are robust when applied 
to many ecological datasets (Fox et al. 2017). 

We developed 32 separate RF models, one for each of the four analyte responses, for both 
concentrations and loads at four temporal scales (Figure 2). Each initial model was fitted to 
the 45 predictors which were used to predict analyte concentrations and loads across each 
of our four temporal scales (response). 

We used the R package VSURF to refine which predictors were retained in our models. VSURF 
uses a step-wise variable selection algorithm that first eliminates irrelevant variables and 
then selects all variables related to the response for interpretation purpose (Genuer et al. 
2015). From each model we extracted the importance of each variable in predicting the 
response data. RF estimates importance by calculating the percent increase of mean squared 
error (%incMSE) of a prediction when the model is built with the predictor of interest 
randomized. A positive %incMSE value indicates the model performance is decreased when 
the predictor in question is randomized, suggesting it is important to the model. We 
summarized the top predictors for all models by ranking each predictor based on their 
%incMSE for each model. To determine the most important predictors across models, we 
calculated average predictor ranking for each predictor. 

We also evaluated the direction of effect of each predictor in each model. This was done by 
evaluating partial dependence plots for each predictor, which graph how the average 
response changes in relation to an individual predictor, while holding all other predictors at 
their mean value. We summarized this data as either showing a positive or negative 
correlation between predictors and response variables. 

3 Results 
3.1  Watershed Delineations 
A total of 53 watersheds were delineated in the Pajaro and Salinas Valleys (Figure 4). The 
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combined watershed area covered 14,782 sq km, spanning five counties. Over 2700 ranch 
operations were reported each year. The majority were Tier 1 and Tier 2 operations, with a 
near even split. As many as 18 ranches were still under review to determine ranking and 

 

Figure 4. Map of watershed delineations and 2018 ranch locations by tier. 
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were listed as Tier 0. 

3.2  Analyte concentrations within watersheds 
Water quality monitoring indicated the greatest surface water nutrient concentrations 
occurred in the lower Salinas watershed. Ammonia concentrations were generally lower in 
the Pajaro and mid to upper Salinas watersheds across all temporal scales (Figure 5). The 
greatest concentrations of ammonia were elevated during the first flush and summer 
months (1.1 – 5.0 mg/L). Nitrate + nitrite and total nitrogen analytes exhibited similar 
patterns, both spatially and temporally, where higher concentrations were observed during 
summer (14.1 – 70.0 mg/L; Figures 6 and 7). Phosphorus concentrations were assessed to 
be low throughout the study area with the highest annual concentrations in the lower 
Salinas watershed and lower to mid Salinas watersheds during the first flush events (2.1 – 
10.0 mg/L; Figure 8). 

 

 

Figure 5. Average ammonia concentrations at 53 CMP monitoring 
sites over four temporal scales. 
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Figure 6. Average nitrate + nitrite concentrations at 53 CMP 
monitoring sites over four temporal scales. 

Figure 7. Average total nitrogen concentrations at 53 CMP 
monitoring sites over four temporal scales. 
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3.3  Model results 
The RF analysis produced 19 models that explained greater than 30 percent of the 
variability in the response data (R2 ≥ 0.30) (Table 3). Our most robust models predicted 
Nitrate + Nitrite and Total Nitrogen concentrations, explaining more than 60% of the 
variability over annual and summer time periods. 

3.3.1  Top models for each analyte 
Our most robust concentration models predicted first flush ammonia, summer nitrate + 
nitrite and phosphorus, and annual total nitrogen (Table 4). Groundwater quality was 
among the top predictors for each of these models. 

Our most robust load models predicted summer load for each analyte (Tables 3 and 5). 
Groundwater quality were among the top predictors in the ammonia and phosphorus load 
models. Nutrient management practices were among the top predictors for Nitrate + Nitrite 
and Total Nitrogen Summer models. 

 

Figure 8. Average total phosphorus concentrations at 53 CMP 
monitoring sites over four temporal scales. 
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Table 1. Percent of the variation in response explained by the predictor data. Highlighted 
values indicate models with less than 30% of the variation explained (R2 < 0.30). 

Analyte Annual First Flush Summer Winter 

Ammonia 
Concentration 30.8 35.27 0.63 10.84 
Load 10.01 -4.58 42.23 5.94 

Nitrate +Nitrite 
Concentration 71.38 38.18 72.49 55.73 
Load 11.45 41.2 71.02 -0.8 

Total Nitrogen 
Concentration 72.31 46.31 61.72 68.19 
Load 13.62 40.76 72.23 6.81 

Phosphorus 
Concentration 26.71 30.6 63.43 20.03 
Load 23.67 41.53 48.4 5.58 

 

 
Table 2. Summary of the top performing analyte concentration models and the top 
predictors based on percent increase in mean square error (%incMSE). Correlations were 
inferred from partial dependence plots.  

 

Model R2 Metric Correlation %incMSE
Water table depth Positive 15.57
Ground water - Nitrate + Nitrite Positive 14.50
Tier 1 ranches Negative 12.19
Ground water - Nitrate Positive 6.33
Ground water - Nitrate + Nitrite Positive 27.25
Ground water - Nitrate Positive 23.90

Irrigated acres reporting measuring 
nitrogen
and phosphorus  in organic  amendments

Positive 23.18

Irrigated ares with no reporting Positive 22.56

Irrigated acres measuring N in irrigation wa Positive 22.38

Ground water - Nitrate Positive 73.85

Rock deposition Positive 67.45

Proportion tailwateracres/irigated acres Positive 47.85

Ground water - Nitrate Positive 33.32

Proportion ditch drain acres/irrigated acre Positive 28.90

Phosphorus
Summer 0.63

Ammonia
First Flush 0.35

Nitrate + 
Nitrite

Summer
0.72

Total Nitrogen
Annual 0.72
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Ammonia Concentration – First Flush 
The top three predictors in this model are water table depth, irrigated acres where 
management practices were not disclosed, and Tier 1 ranches. All predictors were positively 
correlated with increased ammonia concentration except for Tier 1 ranches (Figure 9). 

Nitrate + Nitrite – Summer 
Eleven predictors were used in this model. The top predictors included groundwater quality, 
measurement of nitrogen and phosphorus in organic amendments, no reported 
management practice, and measuring nitrogen concentration in irrigation water (Figure 10). 
All the predictors in this model have positive correlations with increasing analyte 
concentration.  

Total Nitrogen Concentration - Annual 
Two predictors were used in this model and were found to be positively correlated with 
total nitrogen concentration (Figure 11). The top predictor for this model was groundwater 
nitrate concentrations. 

Table 5. Summary for the top performing analyte load models and their top predictors 
based on percent increase in mean squared error (%incMSE). Correlations were inferred 
from partial dependence plots. 

 

Model R2 Metric Correlation %incMSE
Total crop acres Positive 23.36
Ground water - Nitrite Negative 23.05
Irrigated acres scheduling fertilizer 
application
to match crop requirements

Positive 45.42

Irrigated acres measuring phosphorus in so Positive 39.93
Tier 2 ranches Positive 25.01
Irrigated acres scheduling fertilizer 
application
to match crop requirements

Negative 24.32

Irrigated acres using precision techniques 
to
place fertilizer in root zone

Positive 14.69

Total crop acres Positive 14.53
Total irrigated acres Positive 14.18

Phosphorus
Summer 0.48 Ground water - Nitrite Negative 54.11

Ammonia
Summer 0.42

Nitrate + 
Nitrite

Summer
0.71

Total Nitrogen
Summer 0.72
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Phosphorus Concentration – Summer 
Three predictors were used for this model (Figure 12). All predictors were found to be 
positively correlated with summer phosphorus concentrations. 

Partial dependence plots for predictors in all models are presented in Appendix C. 

 
Figure 9. Partial dependence plots of the predictors in the ammonia concentration – first 
flush model. Y axis shows change in ammonia concentration vs. each variable, holding all 
other variables in the model at their mean. Variables listed in order of importance from 
top, left to right. WtDep = water table depth, other variables described in Appendix A. 
Tier 1 ranch was the only predictor that was negatively correlated with ammonia 
concentration. 
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Figure 10. Partial dependence plots of the top six predictors in the Nitrate + Nitrite 
concentration – summer model. Y axis shows change in Nitrate + Nitrite concentration vs. 
each variable, holding all other variables in the model at their mean. Variables listed in 
order of importance from top, left to right. IA8=Measured nitrogen and phosphorous 
content of organic amendments, IA15=Answer left blank or No ACF, and IA3=Measured 
nitrogen concentration in irrigation water. Other variables described in Appendix A.  
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Figure 11. Partial dependence plots of the top two predictors in the Total Nitrogen – annual 
model. Y axis shows change in Total Nitrogen concentration vs. each variable, holding all 
other variables in the model at their mean. Variables listed in order of importance from left 
to right. RckDep=Rock Depth. Other variables described in Appendix A.  

 

Figure 12. Partial dependence plots of the top three predictors in the summer 
phosphorus concentration model. Y axis shows change in phosphorus concentration vs. 
each variable, holding all other variables in the model at their mean. Variables listed in 
order of importance from left to right. Other variables described in Appendix A. 
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3.3.2  Top predictors for all models 
The predictors that had the greatest average importance across all models included three 
measures of groundwater quality (section 3.3.4), three nutrient management practices 
(section 3.3.3), proportion of tailwater to irrigated acres, and water table depth (section 
3.3.5). Groundwater nitrate concentration was found to be among the top predictors in 11 
models. Importance of all predictors for each model are listed in Appendix B. 

3.3.3  Nutrient management practices 
We examined the nutrient management practices that were assessed to be the most 
important in our models – scheduling fertilizer application to match crop needs (IA2), use of 
urease and/or nitrification inhibitors (IA10), and no reported nutrient management practice 
(IA15). Scheduling fertilizer application to match crop requirements (IA2) was found to be 
the most important nutrient management practice in our models on average (Table 6). IA2 
was included in seven load models, with four being positively correlated with water quality. 
IA2 was also found to be negatively correlated with summer total nitrogen load and annual 
phosphorus load. IA2 was not assessed to be an important predictor in any of the winter 
models. The use of urease and/or nitrogen inhibitors (IA10) was positively correlated with 
each of our first flush load models (Table 7).  

Non-reporting of management practices (IA15) was included as a predictor in nine models. 
Increases in non-reporting were found to be positively correlated with water quality for all 
for analytes - three concentration and six load models (Table 8). Non-reporting was also a 
predictor across annual, summer, and winter temporal scales. 

Measuring nitrogen and phosphorous content of organic amendments (IA8) was the most 
important nutrient management practice among just concentration models, occurring in 5 
models. Like IA10, IA8 was also always positively correlated with nutrient concentrations. 
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Table 6. Scheduling fertilizer application to match crop requirements (IA2) was assessed 
to be the most important management practice for predicting loads. 

Analyte - (Concentration/Load) Temporal scale %incMSE Correlation 
Ammonia - Load First flush 7.58 Positive 

Nitrate + Nitrite - Load 
First flush 25.84 

Positive 
Summer 45.42 

Total Nitrogen - Load 
First flush 23.56 Positive 
Summer 24.32 Negative 

Phosphorus - Load 
Annual 12.71 Negative 
Summer 15.58 Positive 

 

Table 7. The use of urease and/or nitrification inhibitors (IA10) are positively correlated 
with higher analyte loads during first flush. 

Analyte - (Concentration/Load) Temporal scale %incMSE Correlation 
Ammonia - Load First flush 14.50 Positive 
Nitrate + Nitrite Load First flush 20.30 Positive 
Total Nitrogen - Load First flush 21.34 Positive 
Phosphorus - Load First flush 10.53 Positive 

 

Table 8. Non–reporting of management practices (IA15) was positively correlated with 
increases in ammonia and nitrate + nitrite concentrations and load of four all four 
analytes. 

Analyte - (Concentration/Load) Temporal scale %incMSE Correlation 

Ammonia - Concentration 
Annual 15.82 

Positive 
Summer 12.11 

Ammonia - Load 
Annual 14.07 

Positive 
Winter 7.70 

Nitrate + Nitrite - Concentration Summer 22.56 Positive 

Nitrate + Nitrite - Load 
Annual 11.78 

Positive 
Winter 10.24 

Total Nitrogen - Load Winter 8.75 Positive 
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3.3.4  Groundwater quality 
Groundwater quality was assessed to be the most important predictor for across all models 
on average. Nitrate, nitrite, and nitrate + nitrite concentrations in municipal wells were used 
in 25 models, across all analytes and temporal scales. Groundwater nitrate concentration 
was included in 12 concentration models. Increases in nitrate concentration in groundwater 
was positively correlated with increases in total nitrogen concentrations across all temporal 
scales (Table 9). 

Groundwater nitrate + nitrite concentration was used in nine concentration models. 
Increases in nitrate + nitrite concentration in groundwater were positively correlated with 
increases in total nitrogen concentrations across all temporal scales. 

Groundwater nitrite concentration was a predictor in four models. Increases in nitrite 
concentration was positively correlated with summer ammonia load, first flush nitrate + 
nitrite and total nitrogen concentrations. However, there was a negative correlation with 
annual phosphorus concentration. 
 
3.3.5  Water table depth and tailwater 
Increasing water table depth was positively correlated with ammonia concentrations across 
all temporal scales. First flush phosphorus concentration was also positively correlated with 
water table depth (Table 10). Higher proportion of tailwater to irrigated acres was positively 
correlated with increased winter total nitrogen concentration and annual and summer 
phosphorus concentration. 
 
3.3.6  Predictor interactions 
Several of our models suggest interactions between predictors. The annual nitrate + nitrite 
concentration model (R2 = 0.714) was found to increase with increases in groundwater 
nitrate + nitrite concentrations and the total irrigated acres that were reported to have 
measured nitrogen concentrations in irrigation water (IA3) (Figure 13). Summer total 
nitrogen load (R2 = 0.722) was found to have an interaction between total irrigated acres 
and the total irrigated acres that implemented the practice of scheduling fertilizer 
applications to match crop requirements (IA2). In this model the management practice was 
shown to be effective in limiting total nitrogen load regardless of the total irrigated acres 
(Figure 14). 
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Table 9. Summary of models with groundwater quality as a predictor. 

Metric Analyte - (Concentration/Load) Temporal scale %incMSE Correlation 
N

itr
at

e 

Ammonia - Concentration 
Annual 13.86 

Positive First flush 6.33 
Summer 6.33 

Nitrate + Nitrite - Concentration 
Annual 25.71 

Positive 
Summer 23.90 

Total Nitrogen - Concentration 

Annual 50.54 

Positive 
First flush 22.37 
Summer 54.97 
Winter 29.29 

Phosphorus - Concentration 
Annual 12.96 

Positive Summer 33.32 
Winter 77.99 

N
itr

ite
 Ammonia - Load Summer 23.05 Positive 

Nitrate + Nitrite - Concentration First flush 23.94 Positive 
Total Nitrogen - Concentration First flush 19.67 Positive 
Phosphorus - Load Summer 54.11 Negative 

N
itr

at
e 

+
 N

itr
ite

 

Ammonia - Concentration 
First flush 14.50 

Positive 
Winter 7.57 

Nitrate + Nitrite - Concentration 
Annual 29.31 

Positive 
Summer 27.25 

Total Nitrogen - Concentration 

Annual 58.55 

Positive 
First flush 19.16 
Summer 57.20 
Winter 27.28 

Phosphorus - Concentration Annual 7.94 Positive 
 

Table 10. Summary of models with water table depth and tailwater as predictors. 

Metric Analyte - (Concentration/Load) Temporal scale %incMSE Correlation 

Water table depth 
Ammonia - Concentration 

Annual 25.21 

Positive 
First flush 15.57 
Summer 6.31 
Winter 10.87 

Phosphorus - Concentration First flush 15.89 Positive 

Tailwater 
Total nitrogen - Concentration Winter 33.06 Positive 

Phosphorus - Concentration 
Annual 13.16 

Positive 
Summer 47.85 

 



 

23 
 
 

 

Figure 13. Partial dependence plot shows an interaction between groundwater NO3- + NO2- 
concentration and the management practice assessing N concentrations in irrigation water. 

 

Figure 14. Partial dependence plot indicating the number of irrigated acres where fertilizer 
application was scheduled to match crop needs is effective in limiting total summer N load. 

 



 

24 
 

 4 Discussion 
Our models suggest that surface water quality is influenced by groundwater quality. This is a 
legacy effect of unregulated farming practices prior to the implementation of California’s 
stringent water quality regulations. Nutrient enriched groundwater discharge to rivers (either 
through runoff of pumped water or natural discharge) appears to be one of the major drivers 
of current river nutrient concentrations. However, we do not have an understanding of why 
groundwater nitrate and nitrite concentrations effect phosphorus concentrations and load as 
some of our models suggest.  

Correlations between management practices and nutrient concentrations in this analysis do 
not provide explicit explanations of causation, but do indicate which practices are most 
closely related to lower nutrient concentrations and loads. While most of the practices 
evaluated here (e.g., the timing of fertilizer application to match crop requirements or the 
use of urease or nitrification inhibitors) are expected to improve water quality in agricultural 
runoff, many of the practices had no effect or positive effects. Given that this is just a 
correlation, the actual cause of this relationship could be that areas with higher nitrogen 
loadings have greater adoption or reporting of these practices. But given the lack of a negative 
relationship, the practice not yet effective at reducing nutrient runoff. An example of this is 
the widely adopted practice of adjusting fertilizer application in response to nitrogen 
concentrations in irrigation water which was reported by over 80% of farms. The lack of effect 
could be due to uneven or sporadic use of the practice over time or across crop types within 
a given farm. Practices are reported annually by March, but the actual adoption dates are not 
reported or validated. Or, given that this analysis only used three years of data, the practice 
may need to be used for a longer period of time before improvements are seen. Other 
practices may be quite effective but are not currently applied at a scale large enough to effect 
water quality at watershed scales, like the practice of using treatment systems to remove 
nutrients from irrigation runoff or drainage water. 

4.1  Water quality and drainage 
The poorest surface water quality within the study area was in the lower Salinas watershed. 
The lower Salinas watershed also hosts the greatest concentration of irrigated acres in the 
Central Coast. These waterways generally transport agricultural runoff from the fields with 
tile drain systems.  
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While our models did not investigate the effect of individual drainage system types, increase 
in tailwater (proportion of acreage using ditch, tile or ditch and tile drainage) was positively 
correlated with winter total nitrogen concentrations and annual and summer phosphorus 
and nitrate concentrations. Installation of tile drains may reduce surface runoff by providing 
a storage capacity in the soil above the tiles. Tile drains have been noted to be effective in 
reducing runoff associated with sediment and phosphorus, but additional mitigation 
strategies maybe needed for soluble pollutants such as nitrates (Christianson and Harmel 
2015). Tile drains have the advantage of diverting nutrient enriched waters from 
groundwater, preventing the current problem with nitrogen enriched groundwater from 
being exacerbated. However, nutrient loads are then deposited into surface waters instead.  

Water from tile drains has the advantage of placing much of the nutrient load in one central 
location where it can be treated instead of being dispersed across an entire farm. Research 
by Brauer et al. (2015) in the San Joaquin River, showed that wetlands have an estimated 75 
percent efficiency in removing nitrates from tailwaters. Bioreactors are an additional 
treatment method that removes nitrates by promoting denitrification of agricultural 
tailwaters. However, the Pajaro and Salinas watersheds have been largely denuded of 
wetlands and the reported us of bioreactors is very limited. There was no reported use of 
bioreactors in the Pajaro and upper Salinas watersheds. In 2018, only 48 ranch operations 
reported using a bioreactor across the 2700 farming operations. 

4.2  Limitations  
Our analysis was largely limited by the quality and availability of data. Our annual and first 
flush load models were not as robust as the concentration models. This may be the result of 
having limited flow data to calculate load for each analyte. We did not use crop types as a 
predictor, but certain crops may be associated with increased fertilizer and water use. While 
crop types were available in the ILRP dataset, it would be difficult to parse out how long each 
crop type was cultivated. This makes attributing crop type to individual farms problematic. 
We also did not account for distances between individual ranches and CMP monitoring sites. 
Ranches that were located closer to rivers and to the CMP sites may have more influence on 
water quality at the site, whereas waters from further away would be subject to denitrification 
during transport.  

Applied nitrogen was expected to be an important predictor in some models. However, in 
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2018, there were 60-100% of ranches that failed to report or were tier 1 ranches and not 
required to report the amount of total nitrogen applied to the fields. This minimal data did 
not support a strong enough correlation with the analytes and was not a predictor in any of 
the models. As this reporting becomes better established, this factor may be a better 
predictor of nutrient levels in surface waters and help us understand how much current 
application rates influence water quality.  

Another limitation of this study is the fact that we assessed the effectiveness of farming 
practices by comparing them to temporally coincident nutrient concentrations and loads. A 
better comparison may be between reductions in load or trends in concentrations over time 
with trends in management practices. However, this would require more than 3 years of data 
currently available but could be undertaken in the future.  
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Figure 15. Map of the proportion of 2018 ranches with no total nitrogen 
applied (TNA) data. 
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5 Conclusion 
We found that surface water quality was correlated with groundwater quality and some 
management practices. The lack of reporting was positively correlated with increased 
nutrient concentrations. Scheduling fertilizer applications and the use of urease and/or 
nitrogen inhibitors were also positively correlated with increased loading. These two 
management practices should reduce concentrations and loading, so the correlations we 
observed may not be causal, but rather the result of high adoption rates of these practices 
in areas with high nutrient loadings. Other management practices, including the amount of 
nitrogen applied to fields, showed little to no correlation with water quality. However, these 
practices may not be widely enough implemented or reported to produce any measurable 
effects in our models. 
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Appendix A 
 

Table 11.  Data dictionary 
Abbreviation Definition Source 

IA1-IA15 Total irrigated acres within water shed using A# nutrient management practice (see table 2) 

ILRP 

CropAcre Total Crop Acres 

DitchDrainAcres A). Acres Discharging to ONLY Ditches or Any Other Type of Surface Discharge / IrrigatedAcres 

TileDrainAcres B). Acres Discharging to ONLY Tile Drains or Any Other Type of Sub-Surface Drainage System / IrrigatedAcres 

DitchTileDrainAcres C). Acres Discharging to BOTH Ditches and Tile Drains / IrrigatedAcres 

PondDrainAcres D). Acres Discharging to Pond(s) / IrrigatedAcres 

TailwaterAcres Total Tailwater Acres (Equals A + B + C and cannot exceed Total Irrigated Acres) / IrrigatedAcres 

IrrigatedAcres Total Irrigated Acres 

N_app Nitrogen applied in fertilizers and other materials (lbs/crop-acre) 

N_soil Total nitrogen present in soil (lbs/crop-acre) 

NonSurfaceIrrigatin_only_pct Percent of irrigated acres with nonsurface irrigation only 

Surface_NonSurface_irrigation_pct Percent of irrigated acres with a combination of surface and nonsurface irrigation (does not include surface only or nonsurface only) 

SurfaceIrrigation_only_pct Percent of irrigated acres with surface irrigation only 

Tier0 Count of unknown Tier ranches in WS 

Tier1 Count of Tier 1 ranches in WS 

Tier2 Count of Tier 2 ranches in WS 

Tier3 Count of Tier 3 ranches in WS 

BulkDensity Mean bulk density in WS 

USGS 

Clay Mean clay content of soils in WS 

Om Mean organic matter content in WS 

Perm Mean permeability in WS 

RckDep Mean depth to bedrock of soils in WS 

Sand Mean sand content of soils in WS 

WtDep Mean seasonal water table depth of soils WS 

Well_NO2 Mean NO2 in well 
GAMA well data 

interpolated into a raster 
Well_NO3 Mean NO3 in well 

Well_NO3_NO2 Mean NO3 and in NO2 in well 

Precip Total precip from PRISM monthly totals PRISM Climate Group 

Channel_slope Channel slope - rise over run (250m upstream from CMP station) 

Derived from ArcMap WS_acres WS area (acres) 

WS_slope Mean WS slope 
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Appendix B 
Table 12a. Summary of concentration models with the %incMSE for each of their predictors. Only predictors used in the models are included. 
Symbol in parenthesis indicates positive or negative correlation with each analyte. 

  Nitrate + Nitrite Total Nitrogen 
Metric Annual First Flush Summer Winter Annual First Flush Summer Winter 

WS_acres 24.397 (+) 29.516 (+) 20.155 (+)        30.063 (+) 

Well_NO2  23.942 (+)     19.670 (+)     

Well_NO3 25.708 (+)  23.896 (+)  50.537 (+) 22.367 (+) 54.975 (+) 29.294 (+) 

Well_NO3_NO2 29.305 (+)  27.253 (+)  58.550 (+) 19.161 (+) 57.197 (+) 27.279 (+) 

IA3_acre 20.725 (+)  22.383 (+)          

IA5_acre 18.554 (+)            

IA7_acre 17.373 (+)            

IA8_acre 20.849 (+)  23.177 (+) 62.418 (+)       29.169 (+) 

IA9_acre 19.312 (+)            

IA14_acre   18.204 (+)          

IA15_acre   22.558 (+)          

Tier1   18.578 (+)          

TailwaterAcres_pct           33.062 (+) 

TileDrainAcres_pct 28.575 (+)  21.057 (+)        28.601 (+) 

DitchTileDrainAcres_pct 23.132 (+) 31.553 (+) 21.206 (+)    21.093 (+)     

NonSurfaceIrrigation_only_pct       19.929 (-)     

WtDep             

RckDep   18.385 (+)  53.211 (+)   50.368 (+)   

Clay             

BulkDensity             

Precip       14.258 (+)     
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Table 12b. Summary of concentration models with the %incMSE for each of their predictors. Only predictors used in the models are included. 
Symbol in parenthesis indicates positive or negative correlation with each analyte. 

  Ammonia Phosphorus 
Metric Annual First Flush Summer Winter Annual First Flush Summer Winter 

WS_acres             

Well_NO2             

Well_NO3 13.858 (+) 6.335 (+) 6.975 ()   12.964 (+)  33.319 (+) 77.993 (+) 

Well_NO3_NO2   14.497 (+)   7.574 (+) 7.941 (+)    

IA3_acre             

IA5_acre             

IA7_acre             

IA8_acre       11.092 (+)     

IA9_acre             

IA14_acre             

IA15_acre 15.821 (+)   12.113 (+)       

Tier1 14.531 (-) 12.192 (-) 8.027 (-)       

TailwaterAcres_pct         13.165 (+)  47.846 (+)  

TileDrainAcres_pct             

DitchTileDrainAcres_pct       9.671 (+)     

NonSurfaceIrrigation_only_pct             

WtDep 25.207 (+) 15.575 (+) 6.310 (+) 10.868 (+)  15.888 (+)   

RckDep             

Clay         9.459 (-)    

BulkDensity       3.928 (+)     

Precip       12.870 (-)     
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Table 13a. Summary of load models with the %incMSE for each of their predictors. Only predictors used in the models are included. Symbol in 
parenthesis indicates positive or negative correlation with each analyte. 

Metric 
Ammonia Nitrate + Nitrite 

Annual First Flush Summer Winter Annual First Flush Summer Winter 
Well_NO2   23.047 (-)      
IA1_acre        9.782 (+) 
IA2_acre  7.582 (+)    25.837 (+) 45.420 (+)  
IA3_acre  14.966 (+)       
IA4_acre         
IA5_acre         
IA6_acre         
IA7_acre       39.931 (+)  
IA8_acre         
IA9_acre         
IA10_acre  14.500 (+)    20.303 (+)   
IA11_acre 11.420 (+)   6.361 (+) 7.607 (+)   7.980 (+) 
IA12_acre  7.921 (+)       
IA13_acre         
IA14_acre 15.295 (+)    11.302 (+)    
IA15_acre 14.071 (+)   7.698 (+) 11.781 (+)   10.241 (+) 
Tier1         
Tier2         
Tier3         
IrrigatedAcres        9.359 (+) 
SurfaceIrrigation_only_pct         
Surface_NonSurface_irrigation_pct 12.971 (-)        
NonSurfaceIrrigation_only_pct 11.925 (+)   7.222 (+) 11.150 (+)    
Crop_acres  11.617 (+) 23.358 (+)      
Channel_slope         
Precip 16.239 (+) 11.866 (+)  12.592 (+) 11.496 (+)   14.021 
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Table 13b. Summary of load models with the %incMSE for each of their predictors. Only predictors used in the models are included. Symbol in 
parenthesis indicates positive or negative correlation with each analyte. 
 Total Nitrogen Phosphorus 
Metric Annual First Flush Summer Winter Annual First Flush Summer Winter 

Well_NO2      
 54.108 (-) 

 
 

IA1_acre   13.084 (+)   9.08 (+)  7.271 (+) 
IA2_acre  23.558 (+) 24.322 (-)  12.708 (-) 15.578 (+)  

 

IA3_acre   12.893 (+)   7.308 (+)  
 

IA4_acre      6.421 (+)  
 

IA5_acre   14.688 (+)   7.992 (+)  
 

IA6_acre   12.653 (+)   6.019 (+)  
 

IA7_acre      7.857 (+)  
 

IA8_acre      8.266 (+)  
 

IA9_acre   12.987 (+)   10.751 (+)  
 

IA10_acre  21.337 (+)    10.528 (+)  
 

IA11_acre 10.190 (+)   5.739 (+) 12.501 (+)  
 7.538 (+) 

IA12_acre      
 

 
 

IA13_acre      
 

 
 

IA14_acre 11.520 (+)    15.040 (+)  
 

 

IA15_acre    8.754 (+)  
 

 8.704 (+) 
Tier1      6.324 (-/+)  

 

Tier2   25.010 (+)   4.152 (+)  
 

Tier3      
 

 
 

IrrigatedAcres   14.188 (+) 7.083 (+)  7.733 (-)  9.034 (+) 
SurfaceIrrigation_only_pct      8.146 (+)  

 

Surface_NonSurface_irrigation_pct 12.521 (-)     
 

 
 

NonSurfaceIrrigation_only_pct 11.910 (+)     
 

 
 

Crop_acres   14.528 (-)   10.400 (+)  
 

Channel_slope      7.376 (+)  
 

Precip 13.491 (+)   9.202 (+) 14.112 (+) 6.600 (+)  8.651 (+) 
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Appendix C 
Ammonia as N total - Annual Concentration 
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Ammonia as N total - First Flush Concentration 
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Ammonia as N total - Summer Concentration 
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Ammonia as N total - Winter Concentration 
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Nitrate + Nitrite as N total - Annual Concentration
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Nitrate + Nitrite as N total – First Flush Concentration 
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Nitrate + Nitrite as N total - Summer Concentration 
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Nitrate + Nitrite as N total - Winter Concentration 
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Total Nitrogen as N total - Annual Concentration 
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Total Nitrogen as N total – First Flush Concentration 
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Total Nitrogen as N total - Summer Concentration 
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Total Nitrogen as N total - Winter Concentration 
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Phosphorus as P total – Annual Concentration 
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Phosphorus as P total – First Flush Concentration 
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Phosphorus as P total – Summer Concentration 
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Phosphorus as P total – Winter Concentration 
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Ammonia as N total - Annual Load
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Ammonia as N total - First Flush Load 
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Ammonia as N total - Summer Load 
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Ammonia as N total - Winter Load 
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Nitrate + Nitrite as N total - Annual Load
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Nitrate + Nitrite as N total – First Flush Load 
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Nitrate + Nitrite as N total - Summer Load 
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Nitrate + Nitrite as N total - Winter Load 
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Total Nitrogen as N total - Annual Load
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Total Nitrogen as N total – First Flush Load 
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Total Nitrogen as N total - Summer Load 
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Total Nitrogen as N total - Winter Load 
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Phosphorus as P total - Annual Load 

 



 

66 
 

Phosphorus as P total – First Flush Load 
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Phosphorus as P total - Summer Load 
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Phosphorus as P total - Winter Load 

 


	Executive Summary
	1 Introduction
	1.1  Background
	1.2  Objectives
	1.3  Study area

	2 Methods
	2.1  Overview
	2.2  Watershed Delineation
	2.3  Data Clean-up & Composition
	2.4  Building random forest models

	3 Results
	3.1  Watershed Delineations
	3.2  Analyte concentrations within watersheds
	3.3  Model results
	3.3.1  Top models for each analyte
	Nitrate + Nitrite – Summer
	Total Nitrogen Concentration - Annual
	Phosphorus Concentration – Summer

	3.3.2  Top predictors for all models
	3.3.3  Nutrient management practices
	3.3.4  Groundwater quality
	3.3.5  Water table depth and tailwater
	3.3.6  Predictor interactions

	4 Discussion
	4.1  Water quality and drainage
	4.2  Limitations

	5 Conclusion
	6 References
	Appendix A
	Appendix C

